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ABSTRACT

In quality control applications, the most basic tasks are monitoring and fault

diagnosis. Monitoring results determines if diagnosis is required, and conversely, diag-

nostic results aids better monitoring design. Quality monitoring and fault diagnosis

are closely related but also have significant difference. Essentially. monitoring fo-

cus on online changepoint detection, whilst the primary objective of diagnosis is to

identify fault root causes as an offline method. Several critical problems arise in the

research of quality control: firstly, whether process monitoring is able to distinguish

systematic or assignable faults and occasional deviation; secondly, how to diagnose

faults with coupled root causes in complex manufacturing systems; thirdly, if the

changepoint and root causes of faults can be diagnosed simultaneously.

In Chapter 2, we propose a novel Bayesian statistical process control method

for count data in the presence of outliers. That is, we discuss how to discern out

of control status and temporary abnormal process behaviors in practice, which is

incapable for current SPC methodologies. In this work, process states are modeled

as latent variables and inferred by the sequential Monte Carlo method. The idea

of Rao-Blackwellization is employed in the approach to control detection error and

computational cost. Another contribution of this work is that our method possesses

self-starting characteristics, which makes the method a more robust SPC tool for dis-

crete data. Sensitivity analysis on monitoring parameter settings is also implemented

to provide practical guidelines.
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In Chapter 3, we study the diagnosis of dimensional faults in manufacturing.

A novel Bayesian variable selection oriented diagnostic framework is proposed. Di-

mensional fault sources are not explicitly measurable; instead, they are connected

with dimensional measurements by a generalized linear mixed effect model, based on

which we further construct a hierarchical quality-fault model to conduct Bayesian

inference. A reversible jump Markov Chain Monte Carlo algorithm is developed to

estimate the approximate posterior probability of fault patterns. Such diagnostic pro-

cedure is superior over previous studies since no numeric regularization is required for

decision making. The proposed Bayesian diagnosis can further lean towards sparse

fault patterns by choosing suitable priors, in order to handle the challenge from the

diagnosability of faults. Our work considers the diagnosability in building dimen-

sional diagnostic methodologies. We explain that the diagnostic result is trustworthy

for most manufacturing systems in practice. The convergence analysis is also imple-

mented, considering the trans-dimensional nature of the diagnostic method.

In Chapter 4 of the thesis, we consider the diagnosis of multivariate linear

profile models. We assume liner profiles as piece-wise constant. We propose an in-

tegrated Bayesian diagnostic method to answer two problems: firstly, whether and

when the process is shifted, and secondly, in which pattern the shift occurs. The

method can be applied for both Phase I and Phase II needs. For Phase I diagnosis,

the method is implemented with no knowledge of in control profiles, whereas in Phase

II diagnosis, the method only requires partial observations. To identify exactly which

profile components deviate from nominal value, the variability of the value of pro-

v
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file components is marginalized out through a fully Bayesian approach. To address

computational difficulty, we implement Monte Carlo Method to alternatively inspect

between spaces of changepoint positions and fault patterns. The diagnostic method

is capable to be applied under multiple scenarios.

vi
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PUBLIC ABSTRACT

Quality control (SPC) is a broad concept in industries. The most critical

problems are about statistical process control (i.e., monitoring) and fault diagnosis.

Process is defined as a combination of materials, methods, equipment, etc. Therefore

all processes have inherent statistical variability. For example, variations are gener-

ated in multiple manufacturing stages and finally transmitted forward to products.

A process is in control if its variability stays within specified limits; otherwise it is

out of control. Based on measurements of products, monitoring is applied to detect if

the process is out of control, whereas diagnosis is required to probe into fault causes

if nonconforming products are detected.

In this thesis, we discuss three practical yet fully studied topics. Firstly, we

study for count data processes, how to develop a SPC tool to conduct robust monitor-

ing in the presence of outliers. Secondly, we study how to make diagnosis on variation

faults in manufacturing processes, considering such faults could be theoretically not

diagnosable. Thirdly, we design a compound diagnostic framework for both out of

control time and fault patterns.

vii
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CHAPTER 1
INTRODUCTION

Applications of quality control widely exist in industries (Zhou et al., 2004;

Montgomery, 2009), signal processing (Wang and Kuo, 2007), medical surveillance

(Tsiamyrtzis and Hawkins, 2005; Cooper et al., 2006; Woodall et al., 2006), etc. Ad-

dressing uncertainties of quality properties by data-driven methods receives intensive

interests. Bayesian quality control methodologies have been used for decades (Ingleby

and Lorenc, 1993; Calabrese, 1995; Colosimo and Del Castillo, 2006). However, such

work are mainly restricted in statistical process control (SPC) studies (Montgomery,

2009), and on Gaussian processes. In this thesis, we propose novel Bayesian methods

to extend the application of Bayes theorems in quality control area.

In Chapter 2, we develop a Bayesian self-staring SPC method to monitor

count processes possibly undergoing outliers. The main objective is to distinguish

outliers and true out of control status. In Chapter 3 we propose a Bayesian diagnostic

practice for dimensional integrity in manufacturing, aided by the knowledge of the

diagnosability of dimensional faults. In chapter 4, we combine the identification of

process shift and process faults in a Bayesian framework, by which both Phase I and

Phase II diagnosis of multivariate processes can be completed.

1.1 SPC on Count Process and Outliers

Traditional SPC methods, such as the cumulative sum (CUSUM) and expo-

nentially weighted moving average(EWMA) control charts, rely on a large phase I
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data set to estimate in-control process parameters (Montgomery, 2009). However, for

many applications sufficient phase I data are not available either because collecting

massive historical data is costly (Castagliola et al., 2013) or because processes under

monitoring are inconsistent (Tsiamyrtzis and Hawkins, 2005). Self-starting process

monitoring frameworks have been developed when phase I data are unavailable or

very limited: Hawkins (1987) suggested a CUSUM scheme to detect shifts on mean µ

and variance σ2 for data from normal or at least asymptotically normal distributions.

Quesenberry (1991b) proposed a Shewhart type methodology for i.i.d normally dis-

tributed data sequence. Li et al. (2010) used sequential likelihood ratio tests to detect

both mean and variance shifts for normally distributed data. Bayesian schemes are

also used for self-starting process monitoring, with the uncertainty of process parame-

ters represented by suitable priors. Tsiamyrtzis and Hawkins (2005, 2008) provided a

closed form solution of the posterior distribution of process means affected by random

walks and abrupt jumps. Apley (2012) dealt with a similar problem with a graphical

implementation. Compared with these works for continuous data, the self-starting

monitoring approaches for count processes are quite limited. Quesenberry (1991a,

1995b) built shewhart-type charts based on normal approximations for Poisson and

Binomial data, and the monitoring performance can be improved if CUSUM and

EWMA setups are employed. Shen et al. (2015) proposed to inspect possible mean

shifts of Poisson data by heuristic tests. But the method requires historical data to

initialize the monitoring.

Outliers with values notably deviated from the in-control state are commonly
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observed in many real world processes. As explained by Hawkins et al. (2003), outliers

are generated by isolated special causes. Here we use an example from asthma patient

health care monitoring to illustrate the motivation for this research. Asthma patients

use a cellphone App to record the time when they need the assistance from rescue

inhalers, and the records are synchronized to a terminal for medical staff. The daily

inhaler usage counts are used as indicators of their health condition. Once abnormal

increase of the usage count is observed, doctors would consider medical intervention.

Patients’ records undergoes surges caused by factors other than symptom aggravation,

e.g., errors in data transmission and air condition deterioration. Fig. 1.1 shows the

record of two patients, referred to as PA and PB. The count sequence of PA can be

clearly split into two segments divided by a change at day 6; however, for PB, we

notice the count suddenly raises to a peak at day 4 but immediately goes back to

normal afterwards, which is found to be caused by the patient’s misoperation after we

checked the original database, i.e., an outlier. For more examples in SPC, see Zhang

and Albin (2009), and Jensen et al. (2006) for examples in SPC, and Zhang (1998) and

Steiner et al. (2009) for more general applications. Such outliers are more common

in early process readings (Jones-Farmer et al., 2014). Therefore if self-starting SPC

methods are applied, for example, in Phase I analysis to reduce the need for potential

costly samples, outliers should be treated with concern. However, outliers are not well

regarded in existing self-starting monitoring frameworks, and outliers are often dealt

with in a retrospective manner (Jones-Farmer et al., 2014). This paper is inspired

to fill the lack of self-starting SPC methods for count data, particularly those being
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Figure 1.1: Asthma Patient Inhaler Usage Count

robust to outliers without sacrificing the fast detection ability to sustained shifts. To

reach this goal, we first propose a hidden Markov model (HMM) for the transition

of the process states. Then we propose to use a particle filter (Arulampalam et al.,

2002; Del Moral et al., 2006), which is a Bayesian sequential Monte Carlo (SMC)

method, to estimate the posterior probability of the process jumping to the out of

control state. And a simple but useful decision rule is used to make decisions on

the state of the process. An efficient Rao-Blackwellization strategy is developed to

improve the efficiency of the particle filter method. A Bayesian scheme is used here

since first it fits the self-starting problem naturally (Tsiamyrtzis and Hawkins, 2005),

and secondly, the HMM formulation also facilitates Bayesian inference.
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1.2 Dimensional Integrity and Fault Diagnosis

In manufacturing area, dimensional quality measures the integrity between

the actual product dimensions and the design nominal. Dimensional faults refer to

that the variability the dimensional measurements of products exceeds the tolerance

limit. The excessive variability could be introduced from multiple variation sources

in assembly and machining stages, e.g., positioning of fixture locators, alignment of

machine tools, and deformation or deterioration of compliant parts (Zhou and Chen,

2005). To obtain close inspection on product dimensional quality, the measurement

data is collected by automatic in-process sensing devices, e.g., the optical coordinate

measuring machine (OCMM) widely built in autobody assembly lines (Zhou et al.,

2003). The collected data are then used to help ensure the dimensional integrity.

SPC (Montgomery, 2009) techniques are used to detect the deviation of the

dimensional quality (see Wu* and Tian (2005), Castagliola (2005), Castagliola and

Maravelakis (2011), etc). However, SPC itself has no diagnostic capability to locate

the root causes of the deviation. In principle the diagnosis of the nonconformity of

the dimensional integrity is closely related with variance components analysis (VCA).

Research in recent years attempted to satisfy the dire need for the dimensional fault di-

agnosis. Shi and Ceglarek (1996) proposed to identify a single fault through principle

component analysis (PCA). Apley and Shi (1998) discussed the modeling for fixture

variation related faults in panel assembly and suggested a least sum of square vari-

ance estimation diagnostic algorithm, and further Zhou and Chen (2005) compared

the characteristics of different variance estimators for diagnostic purpose. Zhou et al.
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(2003) illustrated the diagnosability of dimensional faults in multistage assembly pro-

cesses. Zhou et al. (2004) suggested a hypothesis testing approach based on minimal

norm quadratic unbiased estimators (MINQUE) of variance components. Besides, to

incorporate engineering expertise into the diagnosis, Bayesian approaches were also

developed as alternatives; for example, Bastani et al. (2013) used an enhanced rele-

vance vector machine (RVM), i.e., an empirical Bayesian algorithm, to obtain sparse

estimate of the scale of the variation shift.

A common assumption among the aforementioned diagnostic approaches is

that the quality measurements and process variation are related by mixed linear

models, in which potential dimensional fault sources are accounted as random effects.

Although these studies provides insights to diagnose dimensional faults from product

measurements, the application is restricted because: firstly, the reported methods

require all fault sources to be identifiable (Zhou et al., 2003; Zhou and Chen, 2005),

which could be violated if variation sources outnumber the dimension of quality mea-

surements; secondly, for hypothesis tests or variance estimation oriented diagnosis,

it is usually difficult to determine the cut-off threshold value; thirdly, given multiple

potential fault sources, the credibility of different diagnostic results is desired, which

is inaccessible from these diagnostic frameworks. Therefore, considering the inade-

quacy of current study in dimensional faults diagnosis, in this thesis we propose a

sparse Bayesian diagnosis, upon which variation sources of the shift are evaluated

through Markov Chain Monte Carlo (MCMC) variable selection. More specifically,

in the proposed diagnostic algorithm, fault patterns, i.e., set of variation sources of
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the shift, of different dimensionalities are evaluated, so we resort to a reversible jump

MCMC (RJ-MCMC) framework; afterwards, the fault patterns perceived as likely

root causes are further checked according to their diagnosability. Compared with

other diagnostic methods, the proposed approach has three advantages: firstly, the

method estimates the marginal posterior probability of each fault pattern, rather than

process variance component, so numeric regularization (Bastani et al., 2013) is not

concerned; secondly, the diagnosability property can be integrated into the diagnosis;

thirdly, the method prefers sparse results, which fit practical realities more (Bastani

et al., 2013; Li and Chen, 2016).

1.3 Diagnosis of Multivariate Linear Profiles

In many practical SPC applications, the process quality is better characterized

and summarized by the relationship between the response variable and one or more

explanatory variables, rather than the specific univariate or multivariate distribution

of the concerned quality variables. Therefore our concern transfers from the specific

quality distribution to the relationship, i.e., the so called profiles. Usually, a simple

but effective way is to use linear profiles to model the relationship. Therefore the

study focusing on linear profiles receives the main interest in past decades (see, e.g,

Woodall et al. (2004), Woodall (2007), Kim et al. (2003), Kang and Albin (2000),

and Mahmoud et al. (2007)). Most of the previous work devotes to constructing effi-

cient monitoring frameworks for linear profiles. Kang and Albin (2000) proposed two

control charts for Phase II monitoring for simple linear profiles, namely a multivari-
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ate T 2 chart and and a combined chart of an exponentially weighted moving average

(EWMA)chart and a range chart. Zhu and Lin (2009) considered monitoring the

slope of simple linear profiles in Phase I and Phase II. Mahmoud et al. (2007) consid-

ered changepoint methods for detecting changes in simple linear regression models.

For multivariate linear profiles, or multivariate linear regression models, Kazemzadeh

et al. (2008) and Mahmoud (2008) proposed Phase I methods for profiles represented

by polynomial and multiple regression models, respectively, and Zou et al. (2007a)

proposed a multivariate EWMA chart to monitor general linear profiles in Phase II.

The aforementioned work are all motivated by the requirement of monitoring,

whilst the diagnosis of linear profiles, i.e., identifying the root causes, are not fully

discussed. Statistical methods are designed for multivariate quality processes more

commonly. Barton and Gonzalez-Barreto (1996) proposed the representation of a

quality measurement vector as a linear combination of pre-identified fault patterns

plus a residual. The fault diagnosis was achieved through online monitoring of the

coefficients of the linear model; Runger et al. (2007) further studied how to estimate

those coefficients considering whether the process-oriented effects occur only as spe-

cial causes or also as common causes of variation. Some other traditional statistical

methods attempt to locate the shifted profile components by interpreting and decom-

posing Hotelling’s T 2-type statistic; for example, see Li et al. (2008). On the contrary,

for the diagnosis of linear profiles, the available work is limited. Zou et al. (2011)

proposed a LASSO-based diagnostic framework, which could be use to estimate the

possible shifted profile components. Zou et al. (2007a) also suggested a diagnostic
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aids for linear profile monitoring, based on parametric tests. However, the current

diagnostic methods for linear profiles have several shortcomings: firstly, they depends

on exact knowledge or accurate estimate of the shift position, or changepoint, of the

process, and this assumption could be problematic in practice, and secondly, approx-

imation and asymptotic properties are used in Zou et al. (2011), so the diagnostic

effectiveness needs further examination when the dimension of the profile parameters

is high, and the same concern happens for using F test on single profile parameters

in Zou et al. (2007a) to screen shifted parameters. To satisfy the practical desire

for multivariate linear profile diagnosis, we propose a novel Bayesian framework inte-

grating the diagnosis of the changepoint and shifted profile parameters. We assume

that the quality measurements follow a multivariate linear regression model, i.e., the

regression coefficients are the profile parameters; further, a changepoint model is used

to explain how the process is shifted on the profile parameters. Compared with the

previous work, our approach is able to address the inference on the joint uncertain-

ties of the change model and the changepoint altogether. In addition, our diagnosis

employs a Bayesian variable selection idea, so it can provide a posteriori estimates of

the change models (or fault patterns), rather than the statistical significance of single

profile parameters.

The remaining of the thesis is organized as follows. In chapter 2, we provide

the technique details of implementing the RBPF on monitoring Poisson and Binomial

sequences, with robustness to the presence of outliers. In chapter 3, we consider

dimensional faults modeled as random effects in manufacturing, and discuss how the
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Bayesian diagnosis obtains sparse estimates of fault patterns. In chapter 4, we develop

a Bayesian diagnosis on piece-wise multivariate linear profile models, which aims to

identify the shift position and pattern of profile coefficients.
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CHAPTER 2
A BAYESIAN STATISTICAL PROCESS CONTROL METHOD FOR

COUNT DATA IN THE PRESENCE OF OUTLIERS

Most self-starting SPC methods consider only sustained shifts. However, in

practice outliers could appear as temporary deviations from the in-control state, which

brings challenges to most self-starting control charts. In this paper, we propose a new

online Bayesian framework to detect the out of control state for count data in the

presence of outliers. Based on a hidden Markov model (HMM) for process states, we

are able to use a PF approach for robust process monitoring. We demonstrate how

a RBPF can be used to control computational costs and improve inference efficiency.

Based on the results of simulation and case study, the method is more preferable to

traditional self-starting SPC methods.

The remainder of this chapter is organized as follows. In Section 2.1 we for-

mally define the proposed statistical models. In Section 2.2, following a brief in-

troduction of particle filter (PF) scheme and Rao-Blackwellization, we develop the

Rao-Blackwellized particle filter (RBPF) for Poisson and Binomial data respectively.

In Section 2.3, we illustrate the advantages of our method over traditional self-starting

SPC methods via simulations. In Section 2.4 we further demonstrate the value of the

RBPF by two applications on real data sets. Conclusions are given in Section 2.6.
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2.1 Statistical Model

We respectively consider two popular count data models, namely Poisson and

Binomial sequence:

yt ∼ Poiss(θt) t = 1, 2, · · · , T, (2.1a)

yt ∼ Binom(n, θt) t = 1, 2, · · · , T, (2.1b)

where n is the constant sample size parameter known to us, and θt is unknown in both

models. Suppose the value of θt is determined by the latent process state St ∈ {0, 1, 2},

which represents “in control”, “outlier” and “out of control” states respectively, and

conditioning on the process states St, θt follows:

θt =



θIC if St = 0

Xt if St = 1

θOC if St = 2

, (2.2)

in which θIC , θOC are unknown constants representing in control and out of control

values of θt, respectively, and Xt ∼ D(θ; ξD) (ξD are hyperparameters). We assume

that the process state St propagate as a Markov chain with p0 = P (St = 1|St−1 = 0),

p1 = P (St = 2|St−1 = 0), and r = P (St = 2|St−1 = 1). Therefore the transition

matrix of the Markov chain {St, t = 1, 2, · · ·} can be represented as:

P = (Pij) =



1− p0 − p1 p0 p1

r 1− r 0

0 0 1


. (2.3)
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where

P (St = 2|St−1 = 2) = 1, (2.4a)

P (St = 2|St−1 = 1) = 0, (2.4b)

i.e., St = 2 is an absorbing state and the transition St−1 = 1 → St = 2 is not

allowed. This is because: firstly, unless assignable causes are removed by external

intervention, the out of control state cannot be reversed, that is, naturally St = 2

is a closed or absorbing state, and secondly, outliers immediately followed by out

of control observations could be treated as out of control as well. Equations (2.1)

to (2.2) connect measurements yt, an intermediate variable θt, and an latent state St

hierarchically as an HMM. In this context, the HMM is considered since its flexibility

in modeling nonstationary processes (see examples in speech recognition (Rabiner

and Juang, 1986), bioinformatics (Durbin et al., 1998), and novelty detection (Chatzis

et al., 2009)). And this advantage facilitates the Bayesian filtering procedure discussed

in Section 2.2.

2.2 Bayesian Monitoring Framework

Our primary goal of monitoring is to detect the occurrence of the out of con-

trol state in self-starting mode, based on sequentially observed y1, y2, · · ·. Among

existing self-starting SPC methods, Bayesian frameworks naturally fit the above hier-

archical modeling assumption. By contrast, frequentist methods based on sequential

hypothesis testing could make false decisions on outliers (Rocke, 1989; Bakir, 2006).
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Given P (St−1|y1:t−1), P (St|y1:t) can be calculated sequentially by:

P (St|y1:t) ∝ f(yt|y1:t−1, St)× P (St|y1:t−1), (2.5)

where f(yt) is the likelihood function. For the right side of Equation (2.5), we have:

P (St|y1:t−1) =
∑
St−1

P (St|St−1)P (St−1|y1:t−1), (2.6)

and

f(yt|y1:t−1, St) =
∫
f(yt|θt)πθ(θt|y1:t−1, St)dθt, (2.7)

where P (St|St−1) is given in Equation (2.3) and πθ(θt|y1:t−1, St) is the posterior of θt by

choosing a prior πθ(θ; ξ0) with hyperparameters ξ0. In fact, calculating πθ(θt|y1:t−1, St)

requires enumerating all possible transition routes of S1:t−1, and the computational

complexity is O(3t) up to t; meanwhile the closed form result of the integral in

Equation (2.7) may not be available. Therefore exact Bayesian inference based on

Equations (2.5) to (2.7) is generally intractable. As mentioned in the introduction

section, we propose an approximate inference method based on particle filtering,

which is an SMC method. Particle filter (PF) methods implement sequential Monte

Carlo approximations to keep the computational cost grow as O(t) (Doucet et al.,

2001). In the following, we briefly introduce the standard PF method and the idea

of Rao-Blackwellization to improve efficiency of particle filtering. Then we present

the detailed implementation of Rao-Blackwellized particle filtering for Poisson and

Binomial data.
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2.2.1 Standard Particle Filtering

For inference of St, the process state at time t, a standard PF generates N

particles represented by {P i
t = (Sit ,θit)}Ni=1, where Sits approximate posterior distri-

bution of St, and the three components of θit = (θi0,t, θi1,t, θi2,t) approximate posterior

distributions of θIC , Xt, and θOC , respectively. The standard PF algorithm at time

t+ 1 is given as follows:

1. generate N i.i.d samples of θi0,0, θi2,0 ∼ πθ(θ; ξ0) and θi1,0 ∼ D(θ; ξD) for the

initial particles {P i
0 = (Si0 = 0,θi0)}Ni=1, and assign each P i

0 with weight 1
N
;

2. assume at time t we have N particles {P i
t = (Sit ,θit)}Ni=1 with weights {wit}Ni=1

sum up to 1;

3. at time t + 1, generating the descendant particles {P̃
i

t+1 = (S̃it+1, θ̃
i
t+1)}Ni=1 by

transiting the component Sit in each P i
t to S̃it+1 with probability P (S̃it+1|Sit);

θ̃it+1 is the same as θit except that an independent sample of the component

θ̃i1,t+1 is generated from D(θ; ξD) if S̃it+1 = 1;

4. update the weights of the descendant particles by:

w̃it+1 ∝ wit × f(yt+1|P̃
i

t+1)

= wit × f(yt+1|S̃it+1, θ̃
i
t+1),

(2.8)

where f(yt+1|P̃
i

t+1) is the likelihood function of yt+1;

5. resample N particles P i
t+1 from P̃

i

t+1 with replacement according to the weight

w̃it+1, based on available resampling procedures including multinomial sampling,
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stratified sampling, etc. (Tillé, 2011); then reassign w̃it+1 of each resampled

particle to be 1
N
;

6. approximately marginalize the posterior of the process state by:

P (St+1 = l|y1:t+1) ≈
N∑
i=1

δ(Sit+1 = l)/N, (2.9)

where δ is the indicator function and l = 0, 1, 2.

The process is believed to be out of control if P (St+1 = 2|y1:t+1) ≥M . Based

on our experiences, M = 0.9 is a reasonable setting. For all implementations of our

PF algorithms in this paper, we use M = 0.9. All the initial particles have Si0 = 0

and equal weights.

2.2.2 Rao-Blackwellized Particle Filter

The standard PF method is highly inefficient for our problem because of two

reasons: (1) variance inflation: for each particle at t, only one descendant is generated

at t+ 1, which causes only a few particles at t+ 1 having nontrivial weights and the

variance of the particles’ weights increasing with time (Arulampalam et al., 2002;

Doucet et al., 2001; Chopin and Pelgrin, 2004). (2) degeneracy issue: in our problem

two components of θit are never renewed since the initialization, which results in

lack of mixing properties of θit (Chopin, 2007). Rao-Blackwellization is a strategy to

improve efficiency of standard PF method based on marginalization. First, we exactly

marginalize out the three possible transitions for St+1 as given by P (St+1 = j|St), j =

0, 1, 2, by generating all possible descendant particles for St+1, which leads to variance

reduction of particles’ weights (Chopin and Pelgrin, 2004; Chopin, 2007). Secondly,
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by choosing conjugate priors for θIC and θOC (which are available for the Poisson

and Binomial models), θt in Equation (2.7) can be integrated out analytically. Such

operation can be done recursively so that the degeneracy issue is removed inherently

because the samples/particles for θits are not needed anymore. Assume conjugate

priors πθ(θ; ξIC,0), πθ(θ; ξOC,0), and D(θ; ξD) for θIC , θOC , and Xt respectively, and

denote ξIC,t and ξOC,t as the a posteriori parameters for θIC and θOC at t. The

Rao-Blackwellized particle filtering algorithm is presented as follows:

1. suppose one initial particle P i
t = (S1

0 , ζ
1
0) with S1

0 = 0, ζ1
0 = {ξiIC,0, ξiOC,0};

2. at t, assume we have N particles {P i
t = Sit , ζ

i
t}Ni=1 with weights {wit}Ni=1, and

ζit = {ξiIC,t, ξiOC,t};

3. at t+ 1, depending on possible value of St+1, each P i
t generates at most three

new particles denoted by:

P̃
j0
t+1 = (S̃j0t+1 = 0, ζ̃j0t+1)

P̃
j1
t+1 = (S̃j1t+1 = 1, ζ̃j1t+1)

P̃
j2
t+1 = (S̃j2t+1 = 2, ζ̃j2t+1),

and therefore R(N) = ∑
i 3I(Sit = 0) + 2I(Sit = 1) + I(Sit = 2) new descendants

{P̃
j

t+1}
R(N)
j=1 are generated in total. If S̃jt+1 = 0 or 2, one corresponding compo-

nent of ζ̃jt+1 needs to be derived analytically by conjugacy, and the other one

remains unchanged. If S̃jt+1 = 1, ζ̃jt+1 remains unchanged;
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4. update the weights by:

w̃jt+1 ∝ wit × P (S̃jt+1|Sit)× f(yt+1|P̃
j

t+1)

= wit × P (S̃jt+1|Sit)× f(yt+1|S̃jt+1, ζ
i
t);

(2.10)

5. use the optimal resampling method proposed by Fearnhead and Liu (2007)

to resample N particles {P i
t+1}Ni=1 with weights {wit+1}Ni=1 from {P̃

j

t+1}
R(N)
j=1 .

Based on Fearnhead and Liu (2007), this resampling method guarantees no

duplicated particles are resampled and maximizes the diversity of particles.

The detailed procedure of the optimal resampling method is given in Appendix

A;

6. approximately marginalize the posterior of the process state by:

P (St+1 = l|y1:t+1) ≈
N∑
1
wit+1δ(Sit+1 = l), (2.11)

The out of control state detection decision is still made by checking if P (St+1 =

2|y1:t+1) ≥ M based on Equation (2.11). For all initial particles ζi0 = (ξIC,0, ξOC,0).

In some applications, although the exact value of θIC and θOC are unknown, it is

reasonable to assume a relation between the out of control and in control parameters,

e.g., θOC = kθIC (k > 1), where k is a known constant. If this ratio relation is

assumed, the Rao-Blackwellized PF (RBPF) algorithm presented in this section can

still be applied if we set ζit = ξit and ξi0 = ξIC,0.

For implementing the RBPF in monitoring Poisson and Binomial data, we

choose the priors of θIC and θOC to be the Gamma and Beta distributions respectively.

Steps 2 and 3 in the RBPF algorithm are conducted based on the following lemmas.
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Lemma 2.1. For yt ∼ Poiss(θt), and a priori θIC ∼ Gamma(αIC,0, βIC,0), θOC ∼

Gamma(αOC,0, βOC,0), and Xt ∼ Gamma(αD, βD), suppose in step 2 of the RBPF al-

gorithm P̃
j

t+1 is a descendant of P i
t, and ξiIC,t = (αIC,t, βIC,t), ξiOC,t = (αOC,t, βOC,t),

then:

1. if S̃jt+1 = 0,

ξ̃jOC,t+1 = (αOC,t+1, βOC,t+1) = ξiOC,t and ξ̃
j
IC,t+1 = (αIC,t+1, βIC,t+1), where

αIC,t+1 = αIC,t + yt+1,

βIC,t+1 = 1/( 1
βIC,t

+ 1),
(2.12)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
IC,t = (αIC,t, βIC,t))

∝
Γ(αIC,t+1)βαIC,t+1

IC,t+1

Γ(αIC,t)(βt)αIC,t
;

(2.13)

2. if S̃jt+1 = 2

• if Sit = 0,

ξ̃jIC,t+1 = (αIC,t+1, βIC,t+1) = ξiIC,t and ξ̃
j
OC,t+1 = (αOC,t+1, βOC,t+1), where

αOC,t+1 = αOC,0 + yt+1,

βOC,t+1 = 1/( 1
βOC,0

+ 1),
(2.14)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξOC,0 = (αOC,0, βOC,0))

∝
Γ(αOC,t+1)βαOC,t+1

OC,t+1

Γ(αOC,0)(βt)αOC,0
;

(2.15)
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• if Sit = 2,

ξ̃jIC,t+1 = (αIC,t+1, βIC,t+1) = ξiIC,t and ξ̃
j
OC,t+1 = (αOC,t+1, βOC,t+1), where

αOC,t+1 = αOC,t + yt+1,

βOC,t+1 = 1/( 1
βOC,t

+ 1),
(2.16)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
IC,t = (αOC,t, βOC,t))

∝
Γ(αOC,t+1)βαOC,t+1

OC,t+1

Γ(αOC,t)(βt)αOC,t
;

(2.17)

3. if S̃jt+1 = 1,

ζ̃jt+1 = ζit, and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξD = (αD, βD))

∝
Γ(αD + yt+1)( 1

βD
+ 1)−(αD+yt+1)

Γ(αD)(βD)αD .

(2.18)

Lemma 2.1 is based on the results for the Poisson-Gamma Bayesian model

(Gelman et al., 2014). Such results when θOC = kθIC is given in Lemma 2.2.

Lemma 2.2. For yt ∼ Poiss(θt), θOC = kθIC, and under the same prior settings for

θIC in Lemma 2.1, suppose in step 2 of the RBKF algorithm P̃
j

t+1 is a descendant

of P i
t, and ξit = (αt, βt), then:

1. if S̃jt+1 = 0 or S̃jt+1 = Sit = 2,

ξ̃jt+1 = (αt+1, βt+1), where

αt+1 = αt + yt+1,

βt+1 = 1/( 1
βt

+ 1),
(2.19)
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and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
t = (αt, βt))

∝ Γ(αt+1)βαt+1
t+1

Γ(αt)(βt)αt
;

(2.20)

2. if S̃jt+1 = 1,

ξ̃jt+1 = ξit, and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξD = (αD, βD))

∝
Γ(αD + yt+1)( 1

βD
+ 1)−(αD+yt+1)

Γ(αD)(βD)αD ;
(2.21)

3. if S̃jt+1 = 2 and Sit = 0,

ξ̃jt+1 = (αt+1, βt+1), where

αt+1 = αt + yt+1,

βt+1 = 1/( 1
kβt

+ 1),
(2.22)

and:

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
t = (αt, βt))

∝ Γ(αt+1)βαt+1
t+1

Γ(αt)(kβt)αt
.

(2.23)

Equations (2.22) to (2.23) can be proved based on the fact that if θt ∼

Gamma(αt, βt), then kθt ∼ Gamma(αt, kβt). Note that from Lemma 2.2, when

S̃jt+1 = 2, ξ̃jt+1 represents the ξOC,t in 2.1. For yt ∼ Binom(n, θt), the corresponding

results used in steps 2 and 3 of the RBKF algorithm are given in Lemma 2.3 and

Lemma 2.4.
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Lemma 2.3. For yt ∼ Binom(n, θt), and the priors θIC ∼ Beta(aIC,0, bIC,0), θOC ∼

Beta(aOC,0, bOC,0) and Xt ∼ Gamma(aD, bD), suppose in step 2 of the RBKF algo-

rithm P̃
j

t+1 is a descendant of P i
t, and ξiIC,t = (aIC,t, bIC,t) ξiOC,t = (aOC,t, bOC,t),

then:

1. if S̃jt+1 = 0,

ξ̃jOC,t+1 = (aOC,t+1, bOC,t+1) = ξiOC,t and ξ̃
j
IC,t+1 = (aIC,t+1, bIC,t+1), where

aIC,t+1 = aIC,t + yt+1,

bIC,t+1 = bIC,t + n− yt+1,

(2.24)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
IC,t = (aIC,t, bIC,t))

∝ B(aIC,t+1, bIC,t+1)
B(aIC,t, bIC,t)

,

(2.25)

where B(·) is the beta function;

2. if S̃jt+1 = 2,

• if Sjt = 0,

ξ̃jIC,t+1 = (aIC,t+1, bIC,t+1) = ξiIC,t and ξ̃
j
OC,t+1 = (aOC,t+1, bOC,t+1), where

aOC,t+1 = aOC,0 + yt+1,

bOC,t+1 = bOC,0 + n− yt+1,

(2.26)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξOC,0 = (αOC,0, βOC,0))

∝ B(aOC,t+1, bOC,t+1)
B(aOC,0, bOC,0)

(2.27)
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• if Sjt = 2,

ξ̃jIC,t+1 = (aIC,t+1, bIC,t+1) = ξiIC,t and ξ̃
j
OC,t+1 = (aOC,t+1, bOC,t+1), where

aOC,t+1 = aOC,t + yt+1,

bOC,t+1 = bOC,t + n− yt+1,

(2.28)

and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
OC,t = (aOC,t, bOC,t))

∝ B(aOC,t+1, bOC,t+1)
B(aOC,t, bOC,t)

,

(2.29)

3. if S̃jt+1 = 1,

ζ̃jt+1 = ζit, and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξD = (aD, bD))

∝ B(aD + yt+1, bD + n− yt+1)
B(aD, bD) .

(2.30)

Similar to 2.1, for Lemma 2.3, readers can also refer to the Beta-Binomial

model Gelman et al. (2014). The results corresponding to θOC = kθIC for Binomial

distribution are given in Lemma 2.4.

Lemma 2.4. For yt ∼ Binom(n, θt), θOC = kθIC, and under the same settings for the

priors in Lemma 2.3, suppose in step 2 of the RBKF algorithm P̃
j

t+1 is a descendant

of P i
t and ξit = (at, bt), then:

1. if S̃jt+1 = 0 or Sit = S̃jt+1 = 2,

ξ̃jt+1 = (at+1, bt+1), where

at+1 = at + yt+1,

bt+1 = bt + n− yt+1,

(2.31)
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and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξ

i
t = (aIC,t, bIC,t))

∝ B(at+1, bt+1)
B(at, bt)

,

(2.32)

2. if S̃jt+1 = 1,

ζ̃jt+1 = ζit, and

f(yt+1|S̃jt+1, ζ
i
t) = f(yt+1|S̃jt+1, ξD = (aD, bD))

∝ B(aD + yt+1, bD + n− yt+1)
B(aD, bD) .

(2.33)

If S̃jt+1 = 2 and Sit = 0, since the consistence of the distributions of θIC and

kθIC is unavailable for Binomial distribution, we propose a convenient approximation

method for the case when θOC = kθIC . We propose using Beta(ât, b̂t) as a second

order moment-based approximation for the distribution of kθOC , where (ât, b̂t) can be

calculated by solving the following equations:

ât

ât + b̂t
= kat
at + bt

,

âtb̂t

(ât + b̂t)2(ât + b̂t + 1)
= k2atbt

(at + bt)2(at + bt + 1);
(2.34)

Based on this approximation, steps 2 and 3 of the RBKF algorithm for the case when

θOC = kθIC can be implemented by substituting ξ̂t = (ât, b̂t) for ξOC,0 in Equations

(2.26) and (2.27).

Readers may be curious about choosing the Bayes factor (Kass and Raftery,

1995) to define the decision rule. Actually, we tested the feasibility of a decision rule

based on using the following Bayes factor:

BF = P (St = 2|y1:t)/P (St 6= 2|y1:t)
P (St = 2)/P (St 6= 2) .
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However, because P (St = 2|y1:t) has small value before the shift occurs, a slight

change on the ratio could cause substantial difference in BF , making it difficult to

propose a proper robust cutoff value for the decision rule.

2.3 Simulation Study

In this section, we investigate the performance of the RBPF via simulation

studies. To demonstrate the advantage of the proposed Bayesian approach, two ex-

isting self-starting schemes, namely the Q-CUSUM and Q-EWMA charts introduced

in Quesenberry (1995b,a) are also tested for comparison purpose. The monitoring

performance is assessed by two performance measures:

• the false alarm rate (FARLIC )—the probability of generating a false alarm within

the first LIC observations before the shift, and

• the detection delay (DDLIC )—the average out of control run length, i.e., the

average number of out of control observations required to detect the shift, when

the length of the pre-shift period equals LIC .

The Poisson and Binomial model parameters used in this simulation study are given

in Table 2.1. To implement the RBPF monitoring, the same weakly informa-

Table 2.1: Settings of Simulation Process

Poisson model Binomial model
in control θIC = 7 n = 50, θIC = 0.07

out of control θOC,1 = 1.6 ∗ θIC or n = 50, θOC,1 = 1.6 ∗ θIC or
θOC,2 = 2 ∗ θIC θOC,2 = 2 ∗ θIC
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tive prior is used for πθ(θ; ξIC,0), πθ(θ; ξOC,0) and D(θ; ξD), which is Gamma(3, 3)

for Poisson and Beta(1, 1) for Binomial data. Meanwhile, the number of particles

is N = 300 and p0 and r in P are set as 0.05 and 0.95, respectively. For Q-charts,

we adopt the same settings as in Quesenberry (1995a,b); that is, the reference value

ks = 0.75 (Q-CUSUM) and the smoothing parameter λ = 0.25 (Q-EWMA). Such

settings are demonstrated to have satisfactory performance in detecting shifts of var-

ious scales in the reference. The RBPF and Q-charts are compared under various

parameter settings. For each parameter settings, 20000 simulation runs are used. To

appropriately address the trade-off between false alarm rates and detection delays, we

set FARLIC = 0.05 for all methods when no outlier exists in the pre-shift period, by

tuning p1 in P for the RBPF and the control limit Hs in Q-charts. With respect to

the computational efficiency, the RBPF requires 30 milliseconds to process a dataset

of 100 observations on a Intel Core i7 3.40GHz workstation, whereas Q-charts require

10 milliseconds.

2.3.1 Performance Comparison: Scenario I

In scenario I, we consider the simplest situation, where an outlier is manually is

added at the midpoint (i.e., LIC/2) of the pre-shift segment. Two different lengths of

pre-shift period (LIC = 50 and LIC = 100) are considered. Outliers are randomly gen-

erated based on the corresponding count model with mean δθIC ; δ = 1, 1.5, 2, 2.5, 3, 4

and δ = 1 represents the case when no outlier exists.
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Poisson data

Table 2.2 compares the FARLIC and DDLIC performance of RBPF, Q-CUSUM,

and Q-EWMA for Poisson data. FARLIC is not affected by the observations after the

pre-shift segment, so it is not specified with respect to the value of θOC . As discussed

earlier, we set FARLIC to be close to 0.050 for all three methods when there is no

outlier in the pre-shift period (δ = 1). When an outlier exits in the pre-shift period

(δ > 1), however, for all three methods the FARLIC are different from 0.050 due to

the impact of the outlier. For a robust method, we hope the outlier will not cause

substantially high FAR. From Table 3, the FAR performance of the RBPF method

is the most robust to the existence of outliers, with FARLIC no greater than 0.061

for all cases. In contrast, the FAR of both Q-charts are quite sensitive to outliers.

Particularly, the FARLIC of the Q-charts are increased to as high as above 0.8 and

0.7 for LIC = 50 and LIC = 100, respectively. Such a high false alarm rate makes

it practically impossible for the self-starting Q-charts to bypass the outliers in order

to detect the sustained shift in the out-of-control state. It is also interesting to note

that, for the RBPF, when the outlier magnitude is large (e.g., δ = 4) the FARLIC is in

fact smaller than 0.050. The reason for this is that when delta is large, the RBPF can

detect the outlier easily. And the obvious outlier divides the pre-shift period into two

shorter periods of length LIC/2, where the false alarm rate over each shorter period

is much less than that of the longer period, leading to smaller FARLIC for the RBPF.

For detection delay (DDLIC ) under both values of θOC , when there is no outlier

(δ = 1), the RBPF and Q-charts have very similar performance. However, for the
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Table 2.2: Comparison scenario I: Poisson

FARLIC DDLIC

Method δ LIC = 50 LIC = 100 LIC = 50 LIC = 100
θOC,1 θOC,2 θOC,1 θOC,2

RBPF

1 0.050 0.050 6.18 2.76 6.93 3.14
1.5 0.061 0.052 6.45 2.83 7.09 3.17
2 0.055 0.057 6.64 2.89 7.16 3.20

2.5 0.051 0.051 6.60 2.89 7.16 3.22
3 0.041 0.045 6.66 2.84 7.13 3.19
4 0.032 0.035 6.55 2.83 7.05 3.19

Q-CUSUM

1 0.049 0.049 6.27 3.17 6.68 3.48
1.5 0.059 0.061 6.55 3.23 6.85 3.52
2 0.112 0.072 6.73 3.28 6.91 3.54

2.5 0.218 0.153 7.04 3.42 6.88 3.60
3 0.412 0.289 7.30 3.45 7.05 3.66
4 0.823 0.709 8.20 3.50 7.38 3.68

Q-EWMA

1 0.050 0.049 6.72 3.12 7.14 3.33
1.5 0.061 0.058 6.92 3.25 7.22 3.42
2 0.13 0.102 7.37 3.32 7.43 3.42

2.5 0.266 0.196 7.87 3.44 7.69 3.57
3 0.442 0.373 8.49 3.45 7.75 3.53
4 0.803 0.745 9.96 3.64 8.12 3.62

cases when the outlier exists, the value of DDLIC of the RBPF is consistently smaller

than that of the Q-charts. As δ varies from 1.5 to 4, the detection delay of the Q-charts

is increased steadily and significantly, whereas that of the RBPF is just increased

slightly. This is because when the Q-charts are applied, the undetected outliers

biases the estimate of in control parameters, which in turn hurt the effectiveness in

detecting the out of control state.

This demonstrates that the proposed method can not only avoid false alarms

caused by outliers, but also provide much more robust performance in detection of

the out-of-control state.



www.manaraa.com

29

Table 2.3: Comparison scenario I: Binomial

FARLIC DDLIC

Method δ LIC = 50 LIC = 100 LIC = 50 LIC = 100
θOC,1 θOC,2 θOC,1 θOC,2

RBPF

1 0.050 0.050 9.88 4.81 13.02 5.79
1.5 0.052 0.051 10.17 4.92 13.44 6.09
2 0.054 0.046 10.43 5.03 13.69 6.14

2.5 0.050 0.042 10.74 5.10 13.91 6.23
3 0.044 0.034 11.27 5.18 14.22 6.23
4 0.028 0.022 12.26 5.27 14.61 6.38

Q-CUSUM

1 0.050 0.050 15.21 6.42 14.05 6.65
1.5 0.054 0.051 16.64 6.88 14.30 7.03
2 0.057 0.058 16.78 6.91 14.55 7.18

2.5 0.077 0.070 18.8 7.05 14.74 7.23
3 0.108 0.076 19.79 7.32 15.40 7.26
4 0.223 0.15 23.37 7.56 15.92 7.37

Q-EWMA

1 0.050 0.050 15.62 6.52 18.50 6.92
1.5 0.056 0.052 23.31 6.82 19.14 6.95
2 0.077 0.059 25.15 6.96 19.55 7.05

2.5 0.136 0.096 27.17 7.06 20.05 7.16
3 0.193 0.164 29.27 7.46 20.54 7.26
4 0.452 0.361 31.57 7.79 20.95 7.46

Binomial data

Similar patterns appear in the results of monitoring Binomial data, as shown

in Table 2.3. When δ = 4, the false alarm rate increases to 0.223 and 0.452 for Q-

CUSUM and Q-EWMA (LIC = 50), respectively, whereas that of the RBPF is less

than 0.054 for all δs. The RBPF also outperforms the Q-charts in terms of detection

delay, regardless of the existence of the outlier. In addition, compared with the results

in Table 2.2, the outlier causes more substantial detrimental effects on the DDLIC of

the Q-charts, especially when especially when θOC = θOC,1; for example, when δ = 4

and LIC = 50, the detection delay is increased to 23.37 for Q-CUSUM and 31.57 for

Q-EWMA, respectively, whereas the RBPF has a detection delay of 12.26.
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2.3.2 Performance Comparison: Scenario II

In this section we considering outliers occurring randomly within the pre-shift

segment. Each observation in the pre-shift segment is generated as an outlier with

probability p = 0.025 and 0.05. Moreover, considering the independence among the

scales of outliers, we generate the mean of each outlier from a hyperprior. Note here

the hyperprior is only used in generating outliers and is not involved in monitoring

stage. To investigate the robustness of the three methods to possibly multiple outliers,

we set LIC = 100, θOC = θOC,1.

Poisson data

For the Poisson model, the mean of outliers is generated from Gamma(·; ξ′).

ξ′ is set as (96, 0.25) to make the value of outliers apparently different from that of

in control observations.

Monitoring under scenario II is more challenging for the three SPC methods.

From Table 2.4, the false alarm rates for the PBRF are higher than that under scenario

I because under scenario II the outliers are expected to occur much more frequently.

For example, when p = 0.05, in average five outliers are expected in the pre-shift

period. Nonetheless, the RBPF still has much lower false alarm rates compared with

Q-CUSUM and Q-EWMA charts, which have FARLIC = 0.842 and 0.853 respectively

for p = 0.05. The RBPF also demonstrates superior detection speed. From Table

2.4, the DDLIC of the RBPF is no greater than 7.43 for all cases whereas that value

of the Q-charts can increase to 12.94. So far in the simulation studies we have
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Table 2.4: Comparison Scenario II: Poisson

Method p FARLIC DDLIC

RBPF 0.025 0.085 7.29
0.05 0.134 7.43

Q-CUSUM 0.025 0.640 7.54
0.05 0.842 9.58

Q-EWMA 0.05 0.691 8.07
0.05 0.853 12.94

Table 2.5: Scenario II: RBPF with Knowledge of k Available
(Poisson)

Method p FARLIC DDLIC

RBPF 0.025 0.065 5.96
0.05 0.094 6.16

applied the RBPF without assuming any knowledge of the shift magnitude k. In

Section 2.2.2, we also present the RBPF algorithm if the knowledge of k is available.

Next we test the performance of the RBPF algorithm incorporating the knowledge of

k = 1.6 for data generated under setting of scenario II. From Table 2.5, we see that

utilizing the knowledge of k in the RBPF method benefits both FARLIC and DDLIC .

Being able to effectively utilize the shift magnitude information is another advantage

of the RBPF over traditional self-starting SPC methods such as the Q-charts. We also

notice that even when knowledge of k is not available, the proposed RBPF method

can still provide satisfactory performance for most cases we tested.
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Binomial data

For the Binomial model, we choose the hyperprior as Beta(6, 30), and the

results are presented in Table 2.6. Similar to the results in Table 2.4, the Q-charts

generate false alarms with significantly higher probability than the RBPF methods.

Also, for the Q-charts, the adverse impact of outliers on DDLIC is more significant.

For example, the detection delays of the RBPF are no greater than 15.42, whereas

that increases to 32.21 for Q-EWMA. The results when k is known as shown in Table

2.7 leads to the same conclusion as for Poisson data.

Table 2.6: Comparison Scenario II: Binomial

Method p FARLIC DDLIC

RBPF 0.025 0.055 14.22
0.05 0.079 15.42

Q-CUSUM 0.025 0.088 15.61
0.05 0.132 17.60

Q-EWMA 0.025 0.143 27.39
0.05 0.212 32.21

Table 2.7: Scenario II: RBPF with Knowledge of k Available
(Binomial)

Method p FARLIC DDLIC

RBPF 0.025 0.047 12.10
0.05 0.052 13.27
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2.3.3 Sensitivity Analysis of Parameters Setting of RBPF

An important practical question arises when using the RBPF, that is how to

properly select the parameters. The main concern focus on (p0, p1, r) in P. The choice

of (p0, p1, r) affects FARLIC and DDLIC . For r, we typically assume that outliers occur

more likely in an isolated way so we set r � 1−r. Based on our experience, given p0,

p1, the monitoring performance is similar for any r ∈ [0.95, 1). In this paper, we fix

r = 0.95. In practice, a desired FARLIC should be specified by practitioners. Then

we fix the value of p0 or p1 (p0 in this paper) and the other parameter is determined

by the specified using tuning simulations. To study the effects of p0, we conduct

simulation tests for various values of p0 under scenario 1 and tune the value of p1

correspondingly so that FARLIC = 0.05 for LIC = 50, δ = 1, 2, 2.5, 3 and θOC = θOC,1.

Table 2.8 presents the monitoring performance with respect to different set-

tings of p0. It can be seen that, when there is an outlier, a larger value of p0 leads

to lower false alarm rate but higher detection delay. However, for all the tested p0s,

the RBPF outperforms the Q-charts (see Table 2.2). Similar trends are observed fro

Binomial data, as shown in Table 2.9. For Binomial data, under all tested values of

p0, the FARLIC and DDLIC are much better than those of the Q-charts.

2.4 Case Study

In this section, we implement the SPC methods to two real world examples. In

the first example, we revisit the two data series shown in Fig. 1.1, which were collected

for monitoring of asthma patient health status. Due to confidentiality considerations,
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any information that might reveal the identity of patients have been removed and

count data has been rescaled. Underdispersion can be observed within the count

data of both the patients, so we choose to model the series by the Binomial model.

We use n = 24, the number of hours during a day, as the sample size of the Binomial

distribution since patients usually use inhalers at most once per hour. All the three

SPC methods are designed with FARLIC = 0.05 for LIC = 50. The RBPF detects

the out of control state at the 7th day for PA, whereas it does not signal for PB. The

posterior probability of the out of control state at each time is given in Fig. 2.1 (up to

the time when monitoring stops), and the detected shift is marked by the red vertical

line. Compared with the RBPF, the Q-charts also detect the shift for PA at the same

sample; however, they generate a false alarm at day 4 for PB. Therefore, the RBPF

provides more prominent ability in the health management of asthma patients.

The second example is the bi-monthly aggregated counts of adverse events

related to loss of therapy for one specific neurostimulator, as shown in Fig. 2.2. The

data can be retrieved from the FDA MAUDE database Xu et al. (2015) assumes

the data follows Poisson distribution and indicates a shift happened in June 2011

Table 2.8: Performance with Multiple p0: Poisson

δ = 1 δ = 2 δ = 2.5 δ = 3
p0 FARLIC DDLIC FARLIC DDLIC FARLIC DDLIC FARLIC DDLIC

0.10 0.05 6.65 0.045 7.09 0.039 7.12 0.033 7.08
0.08 0.05 6.50 0.049 6.97 0.044 6.95 0.038 6.82
0.06 0.05 6.26 0.055 6.74 0.048 6.79 0.039 6.72
0.05 0.05 6.18 0.061 6.64 0.055 6.60 0.041 6.66
0.03 0.05 5.89 0.066 6.29 0.075 6.33 0.060 6.49
0.01 0.05 5.73 0.074 6.30 0.090 6.40 0.082 6.25
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Table 2.9: Performance with Multiple p0: Binomial

δ = 1 δ = 2 δ = 2.5 δ = 3
p0 FARLIC DDLIC FARLIC DDLIC FARLIC DDLIC FARLIC DDLIC

0.10 0.05 10.21 0.045 10.86 0.037 11.45 0.027 12.26
0.08 0.05 10.18 0.044 10.81 0.041 11.39 0.032 11.93
0.06 0.05 10.01 0.050 10.55 0.045 10.98 0.040 11.55
0.05 0.05 9.88 0.052 10.43 0.049 10.74 0.044 11.27
0.03 0.05 9.67 0.055 10.21 0.056 10.60 0.055 10.86
0.01 0.05 9.59 0.061 10.27 0.072 10.54 0.085 10.75

(marked by the red vertical line in Fig. 2.2). It can be seen that, before the shift

at June 2011, there are two outliers at December 2009 and June 2010, respectively,

which are marked by a circle in Fig. 2.2. To apply the RBPF, we choose p0 = 0.1

and Gamma(6, 10) as the hyperprior prior, and p1 is tuned empirically as in Section

2.3, such that the RBPF has FARLIC = 0.05 for LIC = 20 and θIC = 60. The

posterior probability of being out of control is also provided in Fig. 2.2, against the

original data. The RBPF detects the shift at the 3rd observation after the shift. The

Q-charts are also adjusted accordingly. However, the Q-charts generate false alarms

at the outliers.

2.5 Conclusions

We have proposed an online Bayesian framework to detect the abrupt shift in

a sequence of count data. We consider outliers as challenges to SPC monitoring, and

then use a hidden Markov chain to model the real process. Since implementing exact

inference is not allowed here because the explosive computing cost, a RBPF with

optimal resampling procedure becomes our choice, and it is performed on count data
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Figure 2.1: RBPF Monitoring of Asthma Patient Inhaler Usage

Count

with procedures developed in Section 2.2.2. In addition, choosing weakly-informative

prior for the process mean permits the self-starting property. The performance of the

proposed RBPF has been evaluated through simulation studies by comparing with two

traditional self-starting control charts. The results indicate that the proposed method

has significant advantage over the traditional ones. Specifically, the proposed method

controls the false alarm rate at an acceptable level, and it can be further improved

if the knowledge of shift scale is available; the Q-charts, however, is incompetent

to identify outliers from the shift. In addition, we have conducted the sensitivity

analysis to provide guidelines to set parameters of the RBPF properly. Apart from

the numeric investigation, we also have verified the practical value of the RBPF on
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several real world applications.

2.6 Conclusions

We have proposed an online Bayesian framework to detect the abrupt shift in

a sequence of count data. We consider outliers as challenges to SPC monitoring, and

then use a hidden Markov chain to model the real process. Since implementing exact

inference is not allowed here because the explosive computing cost, a RBPF with

optimal resampling procedure becomes our choice, and it is performed on count data

with procedures developed in Section 2.2.2. In addition, choosing weakly-informative

prior for the process mean permits the self-starting property. The performance of the

proposed RBPF has been evaluated through simulation studies by comparing with two

traditional self-starting control charts. The results indicate that the proposed method

has significant advantage over the traditional ones. Specifically, the proposed method

controls the false alarm rate at an acceptable level, and it can be further improved

if the knowledge of shift scale is available; the Q-charts, however, is incompetent

to identify outliers from the shift. In addition, we have conducted the sensitivity

analysis to provide guidelines to set parameters of the RBPF properly. Apart from

the numeric investigation, we also have verified the practical value of the RBPF on

several real world applications.
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CHAPTER 3
PROCESS VARIATIONAL FAULTS DIAGNOSIS USING BAYESIAN

METHOD

The diagnosis of dimensional faults in manufacturing is widely concerned but

yet fully addressed. The diagnosis is challenging because: firstly, process variation

sources are not explicitly accessible to dimensional measurements of products, and

secondly, the diagnosability property of the fault. Considering the inadequacy of

the diagnosis based on variance estimation, we propose a sparse Bayesian diagnostic

framework. Essentially, a Bayesian variable selection is implemented by employing a

reversible jump Markov Chain Monte Carlo algorithm to estimate the posterior dis-

tribution of fault patterns. We discuss the diagnosability and sparsity of the fault,and

demonstrate the diagnostic efficacy of the proposed method on simulation data and

practical applications.

The rest part of this Chapter is organized as follows. In Section 3.1, we con-

struct the fault-quality model for diagnostic purpose. In Section 3.2 and 3.3, we

demonstrate the background of the RJ-MCMC algorithm and the detailed imple-

mentation of the proposed diagnostic method. The diagnosability issue of variance

deviation faults and the concept of sparse fault patterns are explained in Section

3.4. In Section 3.5 and 3.6, we illustrat the performance of the proposed method via

simulation tests and an industrial case study. Conclusions are presented in Section

3.7.
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3.1 Fault-quality Model

The first step is to develop a fault-quality diagnostic model that links process

variations and product dimensional quality data. Linear fault-quality models are

adopted to describe the variation propagation in multistage manufacturing (Zhou

et al., 2003; Zhou and Chen, 2005). In this thesis, our priority is the diagnosis of

dimensional faults. Therefore, the development of the linear fault-quality model from

chaining state-space models of manufacturing stages is not explained here, and we

just give the final mixed linear model. Suppose the dimensional measurement vector

of product i is Y m×1
i , and process variation can be represented by the random effects

vector βq×1
i , and the linear relationship is then:

Yi = Bβi + εi, i = 1, 2, · · · , N, (3.1)

where Bm×p is the system matrix known from manufacturing process kinetics, and

εm×1
i ∼ Norm(0, σ2I) represents the measurement noise and unmodeled process er-

rors. Discussions on B and βi in manufacturing applications can be found in Apley

and Shi (1998) and Zhou et al. (2003). Assume the random effects βi ∼ Norm(0,Σ),

and we also assume that the components in βi be independent as in Zhou et al. (2003)

for simplicity but without losing reasonableness, i.e., Σ = diag(σ2
1, σ

2
2, · · · , σ2

p) where

σ2
j s are the variance components being diagnosed. Σ can be decomposed by

Σ =



σ2
1

. . .

σ2
p


=



σ2
01 + λ2

1

. . .

σ2
0p + λ2

p


, (3.2)
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where σ2
0js (j = 1, 2, · · · , p) are the design tolerance of σ2

j s correspondingly, and

λjs represent the increased dimensional variability caused by faults (λj > 0 if σ2
j

undergoes shift; otherwise λj = 0); usually σ0j � λj if λj > 0. Denote Σ0 =

diag(σ2
01 , σ

2
02 , · · · , σ

2
0p) and Λ = diag(λ2

1, · · · , λ2
p), then the covariance matrix of Yi is

expressed by:

cov(Yi) = BΣBT + σ2I

= BΣ0B
T +BΛBT + σ2I.

(3.3)

To interpret how Λ affects cov(Yi), the dimension quality of product i, Equation (3.3)

can be further rewritten as:

cov(Yi) = BΣBT + σ2I

= BΣ0B
T +BΛBT + σ2I

= BΣ0B
T + σ2I +

p∑
j=1
Fjλ

2
j ,

(3.4)

and

Fj = B:jB
T
:j j = 1, 2, · · · , p, (3.5)

where B:j is the jth column of B. Our target is to diagnose on which variance

components faults occur given faults are detected by SPC tools. In other words, we

should confirm the fault pattern γ = [γ1, · · · , γp]T , which is defined as an indicator

vector such that γj = 1 if λj > 0 and 0 otherwise.

3.2 Hierarchical Bayesian Model

Before we introduce the Bayesian diagnosis, we first define the prior distri-

butions for the unknown parameters in Equation (3.4) in a hierarchical order. We
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assume that σ2
j s undergo shift with probability p0j independently like Steward et al.

(2016) and Li and Chen (2016), so:

πγ(γ) =
p∏
j=1

p
γj
0j(1− p0j)1−γj , (3.6)

and in this work we assume the deviation happens with equal chance on σ2
j s, i.e., p0j =

p0, and other options could be used if strongly suggested by historical experience.

Next, assume λjs independently and follow:

πλ(λj|γj = 1) = Norm+(µλ, σ2
λ), (3.7)

where Norm+(·;µλ, σλ) is a left truncated normal distribution with mean µλ and

variance σλ so that λjs are bounded as nonnegative. To complete the setting for

priors, we set

πσ2(σ2) = Inv-Gamma(c0, d0), (3.8)

where (c0, d0) are hyperparameters. The settings of the priors will be discussed more

specifically later. Let λγ be the vector containing nonzero λjs, the posterior proba-

bility of a specific γ given D = [Y T
1 ,Y

T
2 , · · · ,Y T

n ]T can then be marginalized from

P (γ|D) ∝
∫
λγ

∫
σ2
L(D|σ2,Σ0,Λ,γ)πλ(λγ)πσ2(σ2)πγ(γ)dσ2dλγ , (3.9)

where L(·) is the likelihood and πλ(λγ) is the joint prior of λγ .

3.3 Bayesian Variable Selection Based Diagnosis

Directly implementing diagnosis from Equation (3.9) is not feasible because:

firstly, integrating over λγ and σ2 is intractable; secondly, even the integration can
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be handled numerically, the exhaustive calculation of P (γ|D) needs to consider all

2p possible fault patterns, so the computational load is unaffordable when p is large.

Therefore we have to adopt the MCMC idea. However, unlike usual MCMC appli-

cations, the inference of γ requires traversing across parameter spaces with varying

dimensionality, i.e., the length of λγ changes as the Markov chain moves. So here we

need to consider the reversible jump Markov Chain Monte Carlo (RJ-MCMC).

3.3.1 Reversible Jump Markov Chain Monte Carlo Method

The RJ-MCMC method is an extension of the Metropolis–Hastings Markov

Chain Monte Carlo(MH-MCMC) algorithm. Suppose we consider a series of possible

modelsMk, k ∈ K, of which the parameter vector θk ∈ θk respectively. We abbreviate

the pair (k,θk) as xk. For example, x1 and x2, in regular MH-MCMC, direct move

between them is not allowed if they are of different dimensions, say, ni and nj, since

the so called “dimension matching” requirement is violated (Green, 1995); however,

in the RJ-MCMC framework this problem is solved by constructing a bijection with

µ1 ∈ Rri×1 and µ2 ∈ Rrj×1 given from densities g, g′ respectively, such that (θ2,µ2) =

h(θ1,µ1) and ni + ri = nj + rj (i.e., so called “dimensionality-matching”); h(·) is the

bijection function. Denote the interested posteriors as π(x1) and π(x2), and the

jumping proposal between two models is q(·|·), Green (1995) and Green and Hastie

(2009) showed that to achieve the required detailed balance:

∫
π(x1)g(µ1)q(x1|x2)α(x1,x2)dθ1dµ1 =∫
π(x2)g′(µ2)q(x2|x1)α(x2,x1)dθ2dµ2,

(3.10)



www.manaraa.com

44

α(x1,x2), the acceptance probability of the move x1 → x2, should be:

α(x1,x2) = min{1, π(x2)g′(µ2)q(x2|x1)
π(x1)g(µ1)q(x1|x2)) ×

∣∣∣∣∂(θ2,µ2)
∂(θ1,µ1)

∣∣∣∣}, (3.11)

where the Jacobian factor is from the transformation from (θ2,µ2) to (θ1,µ1) and

obviously depends on h(·); and the acceptance probability of the reverse move is:

α(x2,x1) = min{1, π(x1)g(µ1)q(x1|x2))
π(x2)g′(µ2)q(x2|x1) ×

∣∣∣∣∂(θ1,µ1)
∂(θ2,µ2)

∣∣∣∣}. (3.12)

For simplicity, in such moves commonly ri or rj are set as 0; for example, if ni < nj,

then only µ1 is needed, and then Equation (3.11) are changed to:

α(x1,x2) = min{1, π(x2)q(x2|x1)
π(x1)g(µ1)q(x1|x2)) ×

∣∣∣∣ ∂(θ2)
∂(θ1,µ1)

∣∣∣∣}, (3.13)

and the acceptance probability of the reverse move is:

α(x2,x1) = min{1, π(x1)g(µ1)q(x1|x2))
π(x2)q(x2|x1) ×

∣∣∣∣∂(θ1,µ1)
∂(θ2)

∣∣∣∣}. (3.14)

For detailed theoretical discussion of the RJ-MCMC, readers can refer to Brooks et al.

(2003b) and Green and Hastie (2009).

3.3.2 Dignosis of Variance Components via RJ-MCMC

To diagnose γ, we apply the RJ-MCMC method to generate R samples of the

unknown variance components in Equation (3.4), denoted by (λγ(1) , σ2
(1)), (λγ(2) , σ2

(2)),

. . ., (λγ(R) , σ2
(R)) and calculate:

P (γ|D) ≈
∑R
k=1 I(γ(k) = γ)

R
, (3.15)

where I is the indicator function.
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To smoothly move the Markov chain on fault patterns with different dimen-

sionality, here we adopt the the “birth-death” transition mode in Brooks et al. (2003b).

That is, for the jump from λγ to λγ′ , it is restricted to three categories:

• γ = γ ′;

• γ ′ is different from γ by one component, say the jth one, such that γ−j = γ ′−j

whereas γj = 0 and γ′j = 1, i.e., #γ ′ = #γ + 1 (denote #λ as the number of 1s

in λ) or {λγ′} = {λ′j} ∪ {λγ};

• γ ′ is different from γ at the jth component, such that γ−j = γ ′−j whereas γj = 1

and γ′j = 0 i.e., #γ ′ = #γ − 1 or {λγ} = {λj} ∪ {λγ′}.

Therefore, γ ′ is either same as γ, or a neighboring pattern of γ. Denote the three

above types of transition by 0, 1, -1, each of which is assumed to happen with equal

probability. To keep the dimension matching, given transition 1 or -1, a component

in γ, say γj, is accordingly chosen with its value switched, and we further assume

γj is chosen uniformly at random among the potential candidates, e.g., p = 3 and

γ = [1, 0, 0]T , P (γj = γ2) = P (γj = γ3) = 0.5 conditional on transition 1. The

jumping probability between variance shift models then follows:

q(γ ′|γ) =



1
3 for transition 0

1
3×(p−#γ) for transition 1

1
3×#γ for transition -1

. (3.16)

Note that the transition is limited to two options on boundary patterns (i.e., γ = 01×p

or 11×p) with equal chance. The complete move of the Markov chain alternatively
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updates λγ and σ2
γ to λγ′ and σ2

γ′ respectively by a Metropolis-Hastings sampler:

1. conditional the noise variance σ2
γ and the transition type from {0, 1,−1}:

• for transition 0, λγ′ is generated from a proposal distribution qλ(·|·) so

that the acceptance ratio is:

r(λγ ,λγ′) =
L(D|σ2

λγ
,λγ′)× πλ(λγ′)× qλ(λγ |λγ′)

L(D|σ2
λγ
,λγ)× πλ(λγ)× qλ(λγ′|λγ) ,

(3.17)

and such move is accepted with probability α(λγ ,λγ′) = min(r(λγ ,λγ′), 1).

For qλ(·|·), we assume λγ′ is generated from Norm+(λγ , σ̃2
λI);

• for transition 1, a “new” variance component mapping u1 in Equation

(3.13) is generated, denoted as u. Assuming g(u) = Norm+(µ̃λ, σ̃2
λ), the

acceptance ratio follows:

r(λγ ,λγ′) =
L(D|σ2

λγ
,λγ′)× πλ(u)× q(λγ ,γ|λγ′ ,γ ′)

L(D|σ2
λγ
,λγ)× g(u)× q(λγ′ ,γ ′)|λγ ,γ)

×
∣∣∣∣ ∂(λγ′)
∂(λγ , λj)

∣∣∣∣
(3.18)

where
q(λγ ,γ|λγ′ ,γ ′)
q(λγ′ ,γ ′)|λγ ,γ) = 1/#γ ′

1/(p−#γ)

and ∣∣∣∣ ∂(λγ′)
∂(λγ , u)

∣∣∣∣ = 1,

since the bijection between λγ′ and (λγ , λj) is an identity map. The ac-

ceptance probability of λγ → λγ′ is α(λγ ,λγ′) = min(1, r(λγ ,λγ′));

• for transition -1, a component in λγ , say u again, is randomly chosen and

removed, which is equivalent to adding u to λγ′ . Therefore, similar to
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Equation (3.14), we have

r(λγ ,λγ′) =
L(D|σ2

λγ
,λγ′)× g(u)× q(λγ ,γ|λγ′ ,γ ′)

L(D|σ2
λγ
,λγ)× πλ(u)× q(λγ′ ,γ ′)|λγ ,γ)

×
∣∣∣∣∂(λγ′ , u)
∂(λγ)

∣∣∣∣,
(3.19)

and we accept the move by α(λγ ,λγ′) = min(1, r(λγ ,λγ′)).

2. The update σ2
γ → σ2

γ′ is straightforward after we sample λγ′ . We choose the

proposal density qσ(σ2
γ′ |σ2

γ) = πσ(σ2
γ′), i.e., the prior distribution of σ2; that is,

r(σ2
γ , σ

2
γ′) =

L(D|σ2
γ′ ,λγ′)× πσ(σ−2

γ′ )× πσ(σ2
γ)

L(D|σ−2
γ ,λγ′)× πσ(σ2

γ)× πσ(σ2
γ′)

=
L(D|σ2

γ′ ,λγ′)
L(D|σ−2

γ′ ,λγ)

(3.20)

and the acceptance probability is α(σ2
γ , σ

2
γ′) = min(1, r(σ2

γ , σ
2
γ′)).

To improve the acceptance rate, elementwise move with random order can be used on

λγ for within-model transition (i.e., transition 0). Algorithm 3.1 gives the pseudocode

for the implementation.

3.4 Diagnosability and Sparse Fault Pattern

3.4.1 Diagnosability of Variance Components

Naturally,the maximum a posteriori estimate of γ is considered as the diag-

nostic result, so we expect P (γ|D) to be distinctive enough. However, this cannot be

guaranteed in many situations. To reach the correct diagnosis, we need the assistance

of the identifiability, or diagnosability of variance components. Reader can refer to

Zhou et al. (2003) for thorough discussion, and here we just adopt the related con-

cepts under our specific problem framework. The Bayesian diagnosis is guaranteed to
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Algorithm 3.1 RJMCMC based algorithm for variance components selection
Data: Yi, i = 1, · · · , N
Input: B, (µλ, σ2

λ), (c0, d0), (µ̃λ, σ̃2
λ), and MCMC sample size R

Output: MCMC samples
Initialization: randomly assign λγ(0) , σγ(0)

for t = 1 to R do
fix σ2

γ(t−1) and randomly choose from transition 0, 1, -1
if transition 0 then
sample λγ′ of same dimension as λγ(t−1)

if α(λγ(t−1) ,λγ′) ≥ 1 then
λγ(t) ← λγ′

else
λγ(t) ← λγ′ with probability α(λγ(t−1) ,λγ′); otherwise λγ(t) ← λγ(t−1)

end if
else if transition 1 then
construct γ ′ by randomly switching one zero component γ(t−1)

j in γ(t−1) to 1,
and accordingly extending λγ(t−1) to λγ′ by λj in Equation (3.18)
if α(λγ(t−1) ,λγ′) ≥ 1 then
λγ(t) ← λγ′

else
λγ(t) ← λγ′ with probability α(λγ(t−1) ,λγ′); otherwise λγ(t) ← λγ(t−1)

end if
else
construct γ ′ by randomly switching one nonzero component γ(t−1)

j in γ(t−1) to
0
if α(λγ(t−1) ,λγ′) ≥ 1 then
λγ(t) ← λγ′

else
λγ(t) ← λγ′ with probability α(λγ(t−1) ,λγ′); otherwise λγ(t) ← λγ(t−1)

end if
end if
given λγ(t) and sample σ2

γ′

if α(σ−2
γ(t−1) , σ

2
γ′) ≥ 1 then

σ2
γt ← σ2

γ′

else
σ2
γt ← σ2

γ′ with probability α(σ−2
γ(t−1) , σ

2
γ′); otherwise σ2

γt ← σ−2
γ(t−1)

end if
end for
Take the initial Rb samples as burn-in period, and P (γ|D) ≈

∑R

t=Rb+1 I(γ
(t)=γ)

R−Rb
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detected variance shift faults which are uniquely diagnosable, as defined in Definition

3.1.

Definition 3.1. Denote λ = 1p×1Λ (i.e., the diagonal of Λ).λj is uniquely diagnos-

able, if ∀ λ1, λ2 s.t.:

λ1j 6= λ2j ⇒ cov(Yi)|λ=λ1 6= cov(Yi)|λ=λ2 . (3.21)

That is, shift on uniquely diagnosable variance components changes the co-

variance of measurement Yi; if all variance components are uniquely diagnosable, the

fault-quality model discussed above is called fully diagnosable; otherwise, it is par-

tially diagnosable. Obviously, fully diagnosable models are most favored in practice

in terms of diagnostic complexity. Denote

H = (BTB) ◦ (BTB) (3.22)

where ◦ is the Hadamard product operator. The fully diagnosable property is deter-

mined by Lemma 3.1.

Lemma 3.1. The fault-quality model defined by Equations (3.1) to (3.3) is fully

diagnosable if and only if H is of full rank.

Lemma 3.1 is proved in Appendix B. The full diagnosability can be more

explicitly interpreted by associating it with the rank of B:

Lemma 3.2. If B is of full rank, then the fault-quality model defined by Equa-

tions (3.1) to (3.3) is fully diagnosable variance faults.
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The proof of Lemma 3.2 is given in Appendix C. The contrapositive of Lemma

3.2 explains how Definition 3.1 could be violated, though not intuitively: in practice,

restricted by economic and technical reasons, usually the number of quality mea-

surements on one product is likely less than that of dimensional variability sources,

i.e., m < p and inherently B is not full rank, which is the necessary condition for

being partially diagnosable on variance faults. For partially diagnosable situations,

the change on cov(Yi) can only reveal that on a combination of variance components

as a whole, rather separable individual ones. To incorporate such circumstances, we

extend the concept of diagnosable faults in a more generalized way as below:

Definition 3.2. Given fault pattern γ, a linear combination fTλγ , f ∈ R#γ×1 is

diagnosable, if ∀ λ1
γ , λ

2
γ , such that

fT (λ1
γ) 6= fT (λ2

γ)⇒ cov(Yi)|λγ=λ1
γ
6= cov(Yi)|λγ=λ1

γ
, (3.23)

and {λγ} is a diagnosable class of variance faults.

It can be seen that Definition 3.1 is a special case of Definition 3.2 when f

contains only one nonzero element. Faults in the same diagnosable class are said to

be “coupled”. The coupling of variance faults possibly can be further decomposed,

and we further define the minimal diagnosable class:

Definition 3.3. Diagnosable class {λγ} is a minimal diagnosable class (MDC) is no

strict subsets of it are also diagnosable classes.

Therefore MDCs are the minimal fault units that can be diagnosed, and

the cardinality of an MDC is referred to as the degree. The relation among fault
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sources can be more intuitively interpreted from Equations (3.4) and (3.5): de-

note ∑p
j=1 Fjλ

2
j = V (λ), a fully diagnosable model requires that ∀λ1, λ2 such that

λ1 6= λ2 ⇒ V (λ1) 6= V (λ2). Rao and Kleffe (1988) indicate that the model is fully

diagnosable if and only if Fjs are linearly independent; otherwise, for example, if

F1 = F2 + F3, then λγ = λ1 = 1 or λγ = [λ2, λ3]T = [1/
√

2, 1/
√

2]T give equal

cov(Yi), so the two fault patterns are not discernible. Theorem 2 and Corollary 1

in (Zhou et al., 2003) illustrate howo to search MDCs by Hr, the the reduced row

echelon form (RREF) of H : each nonzero row of Hr defines an MDC containing the

components of λ corresponding to the nonzero element of the row; additionally, all

MDCs can be enumerated by thoroughly permuting columns of H .

3.4.2 Sparse Fault Pattern

Diagnosing partially diagnosable models is challenging because the diagnosis

cannot distinguish true fault patterns from the equivalent ones, which are coupled

with the true pattern, just conditional on dimensional measurement data from prod-

ucts. However, for most reliable manufacturing lines, the number of faults should be

small. Based on this characteristics, we propose the concept of sparse faults. That

is, γ is sparse if the rest k components in λγ excluding all uniquely diagnosable

components follow:

• rule 1: they are all contained by an MDC of degree larger than 2k, or

• rule 2: they can be split to multiple subsets, each of which is separately con-

tained by MDCs as described in rule 1, and the MDCs are mutually not con-
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nected; two MDCs are not connected if they have no common components (Zhou

et al., 2003).

So basically, γs contain more 0s are more likely to be sparse. Essentially, our Bayesian

diagnosis is a Stochastic Search Variable Selection (SSVS) (Gilks et al., 1995), and

the sparse property of faults can be utilized by setting proper p0, i.e., p0 < 0.5, in

implementation. In Section 3.5, we can see how our diagnosis benefits from such

setting if faults are truly sparse, whereas it makes mistakes if otherwise.

3.5 Simulation Study

In this section, we designed four situations among which fault-diagnosis mod-

els vary from fully to partially diagnosable of different fault coupling structures, and

under each situation we tested how the effectiveness of the Bayesian diagnosis on mul-

tiple fault patterns. For all simulations, we chose fault-quality models to be underde-

termined, i.e., m < p for B, to make the study closer to real circumstances mentioned

before. B is constructed by firstly randomly generating elements Unif(−1, 1) and

secondly conducting column operations to get required rank (except for the example

in 3.5.4). We further set Σ0 = 0p×p for simplicity and σ = 0.5. Conditional on γ and

λγ , N = 50 dimensional measurements was generated as product data from Equation

(3.1) for diagnostic usage in each example. Because diagnosis is done offline, so it

is reasonable that historical experience or expertise can assist setting priors, e.g., Li

and Chen (2016) choose the prior of variance shift through an empirical Bayesian ap-

proach, and (Steward et al., 2016) choose the maximum likelihood estimate (MLE) as
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prior hyperparameters. We chose µλ = 5 and σλ = 3, which makes πλ fairly informa-

tive. Suppose σ2 can be estimated from historical data, we set c0 = N
2 , d0 = c0−1

c0
σ2,

which makes the a priori mean of σ2 equals its true value. Finally, we set p0 = 0.1

to lean toward sparse faults.

To implement Algorithm 3.1, we choseRb = 5000 MCMC samples for the burn-

in purpose and R = 15000 subsequent samples to approximately marginalize P (γ|D);

additionally, we set the ancillary jumping proposal parameters (µ̃λ, σ̃2
λ) = (0, 3) for

high acceptance rate, which was verified in tuning experiments. For each diagnostic

task, we ran the simulation 1000 times for 1000 sets of randomly generated D. The

maximum a posteriori (MAP) fault pattern is determined as the diagnostic results.

The effectiveness of Algorithm 3.1 is assessed by the average P (γ|D) calculated from

the 1000 repetitions and the proportion that the MAP fault pattern is true, which

are denoted by P̂ (γ|D) and rT .

3.5.1 Fully Diagnosable Case

We chose m = 5, P = 7, and B was constructed without column operations

so thatH is of full rank, and therefore all components in λ are uniquely diagnosable.

The diagnostic effectiveness was investigated under 3 sets of faults:

• λγFD1 : λ2 = 2;

• λγFD2 : [λ1 = 2.5, λ7 = 1.8]T ;

• λγFD3 : [λ1 = 2.5, λ4 = 1.8, λ7 = 2]T ;

• λγFD4 : [λ1 = 2, λ2 = 2.5, λ5 = 1.8, λ7 = 3.2]T .
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Table 3.1: Diagnosis under λγFD1

γ P̂ (γ|D) rT
∗(0, 1, 0, 0, 0, 0, 0) 0.989 1

(0, 1, 1, 0, 0, 0, 0) 0.002
(1, 1, 0, 0, 0, 0, 0) 0.002

Table 3.2: Diagnosis under λγFD2

γ P̂ (γ|D) rT
∗(1, 0, 0, 0, 0, 0, 1) 0.978 1

(1, 0, 0, 0, 0, 1, 1) 0.006
(1, 0, 1, 0, 0, 1, 1) 0.006

Table 3.3: Diagnosis under λγFD3

γ P̂ (γ|D) rT
∗(1, 0, 0, 1, 0, 0, 1) 0.984 1

(1, 0, 0, 1, 1, 0, 1) 0.0046
(1, 0, 1, 1, 0, 0, 1) 0.0045

Table 3.4: Diagnosis under λγFD4

γ P̂ (γ|D) rT
∗(1, 1, 0, 0, 0, 0, 1) 0.982 1

(1, 1, 1, 0, 0, 0, 1) 0.0056
(1, 1, 0, 1, 0, 0, 1) 0.0051

The diagnostic results are given in Tables 3.1-3.4, where ∗ marks the true fault pat-

tern. For conciseness, we omit the possible fault patterns diagnosed with trivial

average posterior probabilities (same for other tests). The results show that the true

faults are correctly diagnosed in all 1000 runs, and meanwhile the average posterior

probability P̂ (γ|D) has dominating value (≥ 0.978) at the true fault pattern.

3.5.2 MDC of Degree 4

For this example, we chose m = 4 and q = 7, and then we constructed B with

rank equals 2. Such B makes Rank(H) ≤ 4 so it is a partially diagnosable scenario.
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We provide

Hr =



I3×3

0 0 0

−0.75 −2.75 −6.03 0

7 15 37.08 0

1.31 10.31 17.25 0

0 0 0 1

03×7



,

where I is the identity matrix. Without showing the exhaustive search process of

all MDCs, it can be proved that: λ2
7 is uniquely diagnosable, and every other 4

components in Λ create an MDC of degree 4. The tested shifts are:

• λγmdc41 : λ2 = 2;

• λγmdc42 : [λ1 = 1.5, λ7 = 2.5]T ;

• λγmdc43 : [λ1 = 1.5, λ4 = 2, λ7 = 2.5]T ;

• λγmdc44 : [λ1 = 1.5, λ2 = 2.5, λ7 = 2]T .

λγmdc41 just contains a single non-uniquely diagnosable fault; λγmdc42 is a pattern in-

cluding single faults either uniquely diagnosable or not; λγmdc43 and λγmdc44 both con-

tain a single uniquely diagnosable fault and coupled faults. The diagnosis simulation

results of each pattern can be summarized respectively as:

1. λγmdc41 : Table 3.5 shows γmdc41 is correctly diagnosed as the MAP estimate.

Although λ2 is not uniquely diagnosable, γmdc41 is sparse, since all MDCs which

contains λ1 have degree 4. Therefore λγmdc41 is distinguished by the Bayesian

diagnosis from other equivalent fault patterns as we expect;
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2. λγmdc42 : γmdc42 is sparse from rule 1. From Table 3.6 we can see the diagno-

sis of λ7 is not affected by λ1, and it is diagnosed in all nontrivial candidate

patterns. This property is quite practical because it illustrates that uniquely

diagnosable faults are guaranteed to be diagnosed regardless of the existence of

other non-uniquely diagnosable faults. As for λ1, the sparse characteristic helps

the method capture it, which has been discussed already.

3. λγmdc43 : this fault pattern is challenging for the diagnosis because γmdc432 is not

strictly sparse. As shown in Table 3.7, the portion of γmdc432 being correctly

diagnosed is below 0.5 (0.44). However, the most likely nonuniquely diagnosable

faults given by the diagnosis are all contained in the same MDC {λ1, λ2, λ3, λ4}.

Therefore the diagnostic result still provide useful information; that is, if λ2

and λ3 are excluded by inspection, then we know the true faults would likely

be those coupled with the diagnostic results within the same MDC. Readers

may doubt that λ5 and λ6 should also be considered if λ2 and λ3 are diagnosed,

because they are also coupled together within the same MDC; theoretically this

is justifiable, but the inspection should be arranged with lower priority since

the two components are diagnosed with trivial probability. The diagnosis on λ7

has been explained;

4. λγmdc44 : λ1 and λ2 are correctly diagnosed with probability higher than 0.5.

However, here the probability of correct diagnosis is not significantly higher

than that otherwise, since γmdc44 is not a sparse pattern.
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Table 3.5: Diagnosis under λγmdc41

γ P̂ (γ|D) rT
∗(0, 1, 0, 0, 0, 0, 0) 0.996 1

(1, 1, 0, 0, 0, 0, 0) 0.001
(0, 1, 1, 0, 0, 0, 0) 0.001

Table 3.6: Diagnosis under λγmdc42

γ P̂ (γ|D) rT
∗(1, 0, 0, 0, 0, 0, 1) 0.973 0.997

(1, 1, 0, 0, 0, 0, 1) 0.02
(1, 0, 1, 0, 0, 0, 1) 0.01

Table 3.7: Diagnosis under λγmdc43

γ P̂ (γ|D) rT
(0, 1, 1, 0, 0, 0, 1) 0.46
∗(1, 0, 0, 1, 0, 0, 1) 0.41 0.44

(1, 1, 1, 0, 0, 0, 1) 0.0032
(1, 1, 0, 0, 0, 1, 1) 0.0029

Table 3.8: Diagnosis under FPmdc44

γ P̂ (γ|D) rT
∗(1, 1, 0, 0, 0, 0, 1) 0.51 0.58

(1, 0, 0, 0, 0, 0, 1) 0.32
(1, 0, 0, 1, 0, 0, 1) 0.088
(1, 0, 1, 0, 0, 0, 1) 0.017

3.5.3 MDC of Degree 6

Fault patterns satisfy sparsity with larger opportunity if they have smaller

number of components, and that create larger chance for us to diagnose them. Re-

versely, the more components in fault patterns, the more difficult for the diagnosis.

To manifest this, in this example we construct a fault-diagnosis model with m = 5

and p = 10, under which the largest MDC contains 6 components, such that:

Hr =



I3×3

−0.75 −0.25 0.07 −1.74 −5.31

7 5 −0.12 18.53 46.25

1.31 0.31 0.053 2.79 9.83

02×2

07×8
I2×2

05×2



.

Given the The true faults:

• λγmdc61 : [λ1 = 1.5, λ3 = 2.5]T ;
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Table 3.9: Diagnosis under λγmdc61

γ P̂ (γ|D) rT
∗(1, 0, 1, 0, 0, 0, 0, 0, 0, 0) 0.694 0.83

(0, 0, 1, 0, 0, 1, 0, 0, 0, 0) 0.11
(0, 1, 1, 0, 0, 1, 0, 0, 0, 0) 0.062
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0) 0.039

Table 3.10: Diagnosis under λγmdc62

γ P̂ (γ|D) rT
(0, 0, 0, 0, 0, 1, 0, 1, 0, 0) 0.27
(0, 0, 1, 0, 0, 0, 1, 0, 0, 0) 0.22
(0, 0, 1, 1, 0, 0, 0, 0, 0, 0) 0.21
(0, 0, 0, 1, 0, 1, 0, 0, 0, 0) 0.16

• λγmdc62 : [λ3 = 2.5, λ4 = 3.2, λ5 = 1.5]T .

The simulation results are accordingly can be interpreted as the aforementioned di-

agnostic characteristics: γmdc62 is correctly diagnosed with probability 0.83 as it is a

sparse pattern, whereas γmdc62 is totally missed in the diagnosis. Table 3.10 indicates

that faults in the MDCs containing λj, j = 3, · · · , 8, should be thoroughly inspected,

so as for other similar situations (i.e., no distinct clue implying true fault patterns).

Nonetheless, non-sparse patterns are often contained by MDCs of relatively small

degree, so exhaustive search would be affordable.

3.5.4 MDCs of Degree 3

If the degree of an MDC is low, then it is difficult to facilitate the diagnosis by

the sparsity; for example, if every two variance components forms an MDC, then even

a single fault cannot be discerned from others. Fortunately, sparse fault patterns still

have chance to exist for low degree MDCs. In this example, the method is applied to

the situation in which the whole fault set can be split to 2 groups not connected, for
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each of which the largest MDC have a degree of 3. Given B as a 5× 10 matrix:

B =



1 1 1 0 1
√

2
√

3 2 2 0
03×5

03×5
1 1 1 1 0

0 1
√

2
√

3 2


,

we have:

Hr =



I4×4

5.54

−4.64

0.10

0.61

04×5

06×5

1 0 0 0.12 1.63

0 1 0 1.63 −8.90

0 0 1 −0.75 7.27

02×5



.

It can be proved by permuting columns of B that components λ1 and λ6 are sepa-

rately contained in MDCs that are not connected (e.g., {λ1, λ2, λ5} and {λ6, λ9, λ10}

respectively), and the same for λ2 and λ9. From rule 2 in Section 3.4.2, we know

{σ2
1, λ

2
6} are {λ2

2, λ
2
9} are both sparse patterns even their size is less than the half of

the degree of the MDCs contained by. We assign the true shift sets λγmdc31 and λγmdc31

as:

• λγmdc31 : [λ1 = 2, λ6 = 2]T ;

• λγmdc31 : [λ2 = 2, λ9 = 2]T .
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The results are given in Tables 3.11 and 3.12. It can be seen that the true fault

patterns stand out with dominating average posterior probabilities in the diagnosis.

This example extends the scenario in which sparse faults still apply although MDCs

are of small degree.

3.5.5 MCMC Convergence Analysis

The efficiency of MCMC methods should also be concerned in practice. In

this section we provide empirical evaluation for the convergence perfomance of Al-

gorithm 3.1. However, the convergence assessment is a contentious issue even for

fixed-dimensional cases, and the transdimensional nature of Algorithm 3.1 adds addi-

tional difficulties, i.e., how we judge convergence both within each model and across

models with respect to posterior model probabilities. The Markov chain constructed

by Algorithm 3.1 is ergodic, that is, P (γ,λ|D)-irreducible and aperiodic. This can

be provided by Lemma 10.11 in Robert and Casella (2005), and the detailed proof

is omitted here since it is not our primal concern. The convergence is guaranteed;

however, how fast and well the chain converges requires further assessment. Before

we give more quantitative opinions of the convergence, we visualize the transition

process of the Markov chains in diagnosing λγmdc42 , to intuitively prove the method

Table 3.11: Diagnosis under λγmdc31

γ P̂ (γ|D) rT
∗(1, 0, 0, 0, 0, 1, 0, 0, 0, 0) 0.971 0.99

(1, 1, 0, 0, 0, 1, 0, 0, 0, 0) 0.009
(1, 0, 1, 0, 0, 1, 0, 0, 0, 0) 0.006
(1, 0, 0, 0, 0, 1, 0, 0, 0, 1) 0.004

Table 3.12: Diagnosis under λγmdc32

γ P̂ (γ|D) rT
∗(0, 1, 0, 0, 0, 0, 0, 0, 1, 0) 0.80 0.89

(1, 0, 1, 0, 0, 0, 0, 0, 1, 0) 0.17
(0, 0, 1, 0, 0, 0, 0, 0, 1, 0) 0.017
(0, 1, 1, 0, 0, 0, 0, 0, 1, 0) 0.008
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Figure 3.1: Convergence of MCMC Sampling of λjs

efficiently converges. After the burn-in period of 5000 samples, from Figure 3.1 we

see that the Markov chains of the samples of λ1 and λ2 have fast mixing, and the

only samples near the true shift value are accepted. On the contrary, for other fault

components, the samples series indicate they are discarded by the sampler approxi-

mately with probability 1. The diagnosis from the MCMC completes within 15000

iterations, and the total sampling time on a Intel Core i7 3.40GHz platform is less

than 15 second. Therefore, Algorithm 3.1 provides acceptable diagnosis cost, and

it could also give more information other than fault patterns, such as shift magni-

tudes, if the true fault pattern is sparse. For more rigorous convergence assessments

for Algorithm 3.1, since we concern model components γ over estimating λjs, and
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therefore we here choose the assessment method suggested in Brooks et al. (2003a).

The method proposed various ideas based on the sample path of the model indica-

tor under the assumption that replicated chains that have converged would generate

similar posterior model probabilities; two hypothesis tests, namely Chi-squared and

Kolmogorov-Smirnov tests are used to testify the assumption. Here we generated 6

replicated chains (i.e., run Algorithm 3.1 by 6 times), and still we checked the con-

vergence performance after 5000 burn-in iterations. Since the Kolmogorov-Smirnov

test requires pair-wise comparisons, and therefore for the labor-saving consideration,

we chose the Anderson–Darling test to compare the empirical posterior model distri-

butions from each chain simultaneously. The p-values of the two tests with iteration

length is given in Figure 3.2, from which we can see that the p-values is quite close

to 1 and that indicates no evidence to reject that Algorithm 3.1 has converged after

the burn-in stage.

3.5.6 Prior Sensitivity Analysis

To evaluate the robustness of the method, here we also implement the sen-

sitivity analysis on the priors. πγ and πλ are affect the diagnosis most but cannot

be easily determined. Therefore in this section we chose σλ = 10 and p0 = 0.4 to

make the priors more noninformative, which adds more challenges to the diagnosis.

We selected λγmdc42 and λγmdc43 as examples, so the diagnosability would not affect

the result as nuisance factor. The diagnosis results are given in Table 3.13 and 3.14.

We can tell that with the more weakly informative priors, for λγmdc42 , the posterior
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Figure 3.2: Convergence Assessment by Tests

Table 3.13: Prior Sensitivity Analysis
under λγmdc41

γ P̂ (γ|D) rT
∗(1, 0, 0, 0, 0, 0, 1) 0.844 0.988

(1, 1, 0, 0, 0, 0, 1) 0.084
(1, 0, 1, 0, 0, 0, 1) 0.0314

Table 3.14: Prior Sensitivity Analysis
under λγmdc42

γ P̂ (γ|D) rT
(0, 1, 1, 0, 0, 0, 1) 0.40
∗(1, 0, 0, 1, 0, 0, 1) 0.23 0.28

(1, 1, 1, 0, 0, 0, 1) 0.16

probability of the true fault pattern is less spiky, but nonetheless the diagnostic result

is not affected, whereas for λγmdc43 , such priors yield no significantly different result

than before, and the routine of combining knowledge on the identifiablity and the

Bayesian diagnosis still could lead to correct answer here. Therefore, the method

does not significantly rely on the priors, and such feature is favorable in practice.
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3.6 Case Study

We consider the assembly process example in Zhou et al. (2003) as a practical

problem to evaluate the performance of the Bayesian diagnosis. The 2-dimensional

panel assembly example is simplified from an autobody assembly process. As shown

in Figure 3.3, the process consists of 3 stages, and in each stage, active locators are

potentially subject to wearing, abrading, potential improper installation, etc, and

faults on 2-way and 4-way locators would cause fixtures deviate on X dimension

and X-Z dimensions respectively. To assess if excessive dimensional variation exist,

5 coordinate sensors are placed at positions Mi, i = 1, · · · , 5, and each can provide

measurements regarding the accuracy of fixture locators on both X and Z dimensions.

Within each stage, the number of the potential fixture deviation components is 6, 9,

3 respectively, and then 18 in total. Therefore, the assembly process can be described

by the model in Equation (3.1) with p = 18 and m = 10.

To assess how well the methods perform in practical circumstances, we adopted

the idea used in the simulation study. That is, we generated observations randomly as

true manufacturing measurements, and then implemented the method for diagnosis

aim. Same priors used in simulations were applied here. We modified some design

parameters from the original work and reconstruct B10×18 as shown in Appendix

D. The engineering meaning of B is explained in the original work, if readers have
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interest. To investigate the diagnosability of faults, Hr is calculated:

Hr =



I12×12 012×6

06×12

1 0 0 1.21 0.21 0.70

0 1 0 5.76 −4.39 −13.15

0 0 1 −0.074 0.91 1.23

03×6



,

from which we know λ1···,12 are uniquely diagnosable, and the degree of the largest

MDCs is 4, e.g., {λ13, λ16, λ17, λ18}. From the previous results we know that the diag-

nosis of uniquely diagnosable faults is reliable, so here we just concern the diagnosis

of components coupled with others. The true shift sets tested are:

• λγcase1 λγcase1 : λ13 = 1.5;

• λγcase2 : [λ13 = 1.5, λ14 = 2.5]T .

The performance of the Bayesian diagnosis method is assessed in the same way as

before and given in Table 3.15 and 3.16. From Table 3.15 we can see the Bayesian

estimation of sparse fault pattern is quite accurate as we expect, and the knowledge

of MDCs help us narrow searching scope to λ14,···,18 with respect to the clue given in

in Table 3.16, as discussed in Section 3.5. Notably, the diagnostic tasks in this case

study are beyond the capability of other diagnostic methods mentioned in Section 1.2.

In terms of this, our method is the only choice for such multi-stage manufacturing

process.
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Figure 3.3: 2-Dimensional Panel Assembly

Table 3.15: Diagnosis under λγcase1

γ P̂ (γ|D) rT
∗(01×12, 1, 0, 0, 0, 0, 0) 0.89 0.93

(01×12, 0, 0, 0, 1, 0, 0) 0.070
(01×12, 1, 1, 0, 1, 0, 0) 0.0015
(01×12, 1, 0, 0, 1, 0, 0) 0.006

Table 3.16: Diagnosis under λγcase2

γ P̂ (γ|D) rT
(01×12, 0, 0, 0, 1, 0, 0) 0.48
∗(01×12, 1, 1, 0, 0, 0, 0) 0.24 0.24

(01×12, 0, 0, 0, 1, 0, 1) 0.019
(01×12, 0, 0, 0, 1, 1, 0) 0.016

3.7 Conclusion

We have developed a new Bayesian variable selection based diagnostic method

for the fault-quality model defined in Section 3.1. The implementation of the method

is affected by the diagnosability of fault sources; however, the concept of MDCs helps

improve the opportunity to identify true fault patterns, if the assumption on the

sparsity holds.

The RJ-MCMC methodology is adopted in our study to estimate the posterior
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probability of fault patterns containing varying numbers of components. Guidelines

are provided for the selection of hyperparameters in the Bayesian hierarchical model.

Numerical examples are used to demonstrate the effectiveness of the diagnosis ap-

proach.



www.manaraa.com

68

CHAPTER 4
A BAYESIAN METHOD FOR CHANGEPOINT DETECTION AND

DIAGNOSIS OF MULTIVARIATE LINEAR PROFILES

The SPC of a process characterized by a linear profile model is studied inten-

sively in recent decades. However, such research is not well extended to multivariate

linear profile diagnosis. Being motivated by the insufficiency, we propose a novel

Bayesian diagnostic framework to serve both Phase I and Phase II diagnostic usage.

The Bayesian framework integrates the diagnosis of linear profiles with respect to the

changepoint and change model; that is, it solves two concerns: firstly, whether and

when the process is shifted, and secondly, in which pattern the shift occurs. Essen-

tially the framework is a variable selection approach, and the diagnostic decision is

made based on the posterior probabilities. A Markov Chain Monte Carlo algorithm

is suggested to complete the Bayesian analysis. We represent simulation tests and a

case study to demonstrate the effectiveness of the Bayesian diagnosis.

The proposed approach can be applied to i) inspect inhomogeneous items in

raw data and extract in control information from it (Phase I) or to ii) retrospectively

diagnostic analysis following online monitoring signals (Phase II). Multiple numerical

examples demonstrate the diagnostic effectiveness under various situations. The rest

part of this chapter is organized as follows. Section 4.1 introduces the changepoint

model for multivariate quality data. In Section 4.2 we develop in detail the Bayesian

diagnostic procedures. Numerical experiments and a calibration case study are pro-

vided in Section 4.3 and Section 4.4 respectively. Finally Section 4.5 summarizes the
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chapter and our contributions.

4.1 Changepoint Model for Multivariate Linear Profile

ConsiderN multivariate observations Yi = [Yi1, · · · , Yij, · · · , Yim]T , i = 1, · · · , N ,

and a fixed explanatory variables Bi are associated by a linear model

Yi = Bβi + εi, (4.1)

where βp×1
i = [β(1)

i , β
(2)
i , ..., β

(p)
i ]T is the p dimension profile parameter of concern,

and εm×1
i s are measurement error or process variation independently generated from

Norm(0, σ2I). We assume B is of full rank, and without loss of generality, B is

supposed to be centralized over columns and has no intercept column. Denote βi =

βIC if the profile is in statistical control or βOC otherwise. A changepoint model is

considered to illustrate the appearance of the shift at τ ; that is:

Yi|βi, σ2 ∼ Norm(Bβi, σ2I), (4.2)

where βi = βIC for i ≤ τ and βi = βOC otherwise. In many applications, however,

a more reasonable assumption is that βIC is partially shifted. That is, suppose there

exists a p dimension indicator vector γ = [γ(1), ..., γ(p)]T consisting of 1s and 0s, such

that:

β
(j)
OC = β

(j)
IC if γ(j) = 0,

β
(j)
OC 6= β

(j)
IC if γ(j) = 1,

(4.3)

for j = 1, · · · , p. So γ represents the fault pattern.
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4.2 Bayesian Diagnostic Approach for τ and γ

In this section, we provide the technical details to implement the Bayesian

diagnosis of τ and γ in both Phase I and Phase II diagnostic applications.

4.2.1 Prior Setting

A hierarchical model is constructed to incorporate the prior information of the

variables, e.g., σ2, βIC,OC , τ and γ. Firstly, Yi follows

Yi|βIC ,βOC , σ2 ∼


Norm(BβIC , σ2I) if i ≤ τ,

Norm(BβOC , σ2I) if i > τ.

(4.4)

The prior for σ2 is chosen to be a inverse gamma distribution

πσ2(σ2) = IG(ν1

2 ,
ν2

2 ), (4.5)

where the hyperparameters ν1 and ν2 could be chosen to make πσ2(σ2) reasonably in-

formative, since the knowledge of measurement noise is often available from historical

experience of the monitoring system, and πσ2(σ2) is chosen as a conjugate prior of

the likelihoods in Equation (4.4) for computational convenience. The access to βIC

depends on the applications; for example, when implementing a Phase I analysis, the

exact value of βIC should not be available, and the same for a Phase II study following

self-starting multivariate profile monitoring (see the ongoing work introduced in Zou

et al. (2007b)). Under such situations, we assign Zellner’s g prior for βIC :

βIC |g ∼ Norm(0, gσ2(BTB)−1). (4.6)

For βOC , we previously have already explained that the shift only changes the pro-

file parameter partially. So we can decompose βIC and βOC into two partial vec-
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tors respectively as βγOC , β
γ̄
OC and βγIC , β

γ̄
IC , each of which contains the profile

components accordingly; for example, if p = 4 and γ = [1, 1, 0, 0]T is given, then

βγOC = [β(1)
OC , β

(2)
OC ]T , βγ̄OC = [β(3)

OC , β
(4)
OC ]T = [β(3)

IC , β
(4)
IC ]T , and the decomposition rule

labeled by γ also applies to other vectors and matrices (see Bγ later as an example)

in this chapter. The prior of βOC given γ and βIC is then a combination:

βγ̄OC = βγ̄IC ,

βγOC |g ∼ Norm(0, gσ2(BT
γBγ)−1),

(4.7)

where Bγ is a partial matrix with columns picked from B to match βγOC . Zellner’s

g priors are adopted because their simplicity and computational tractability in cal-

culating the posterior distribution of (τ,γ) (Zellner, 1986). The hyperparameter g in

the priors of βIC and βOC should be appropriately determined. Multiple criteria are

offered to select proper g, e.g., g = N for the unit information prior, g = p2 from a

minimax perspective, g = min(N, p2) for the benchmark prior, or calculating g from

the local empirical Bayes approach. Nonetheless, the famous Bartlett’s Paradox and

Information Paradox causes less optimum inference by using a g fixed in value (Liang

et al., 2008). To avoid the shortcomings of the general g-priors, we propose to use

the so called “hyper g-prior”, i.e., a mixture of Zellner’s g-Priors by assuming g has

the prior

πg(g) = a− 2
2 (1 + g)−a/2, g > 0, (4.8)

which can be also expressed as g
1+g ∼ Beta(1, a2 − 1). a > 2 guarantees that πg(g) is

proper, and such setting is required in later work. Equations (4.4) to (4.11) will be

used for the fully Bayesian inference framework in the following sections. Changepoint
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detection or diagnosis algorithms are often prone to overfitting (Haynes et al., 2017);

that is, adding changepoints which don’t truly exist. In this work, such diagnostic

mistake is referred to the false shift discovery, or type I error. Therefore, the prior

πτ (τ) has perceived importance to control the type I error rate. We construct two

different πτ (τ)s for Phase I and Phase II approaches respectively. That is,

• for Phase I

πτ (τ) =


p0(1− p0)τ−1 1 ≤ τ ≤ N − 1

(1− p0)N−1 τ = N

(4.9)

• and for Phase II

πτ (τ) ∝ eλI(τ=N) 0 ≤ τ ≤ N, (4.10)

where p0 and λ are hyperparameters. πτ (τ) is constructed with different forms and

supports for Phase I and Phase II diagnosis on account of both interpretation purpose

and distinctions between the two applications. In Phase I analysis, the process starts

from in control state, and we assume the in control run length follows a Geometric

distribution, i.e., suppose the shift happens with probability p0 at each time given

the process is in control by the time, and τ = N indicates the process has no shift; by

doing the , the πτ (τ) is eligible to incorporate the knowledge of average in control run

length (AIRL). For Phase II usage, τ = 0 means the shift happens before the very

beginning observation, whereas τ = N means no shift happens and the diagnosis could

be introduced after false alarms generated in monitoring. So λ should be determined

by the type I error probability or false alarm rate of the precedent monitoring. For
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simplicity we assume that each component in βIC undergoes shifts independently and

identically with probability ω0. Therefore the prior of γ can be expressed as

πγ(γ) =
p∏
j=1

(1− ω0)1−γ(j)
ωγ

(j)

0 (4.11)

and πγ(γ) becomes a uniform prior when ω0 = 0.5.

4.2.2 Posterior Distribution for τ and γ

Since τ = N or γ = 0 should indicate there is no shift happens to the profile,

so to keep the independent assumption between τ and γ consistently valid, we define

that βOC = βIC given τ = N and γ 6= 0, or τ 6= N and γ = 0. We derive the

posterior distributions of (τ,γ) depending on whether βIC is known.

βIC is unknown (Phase I)

Denote D = [Y T
1 , ...Y

T
N ]T , we have

P (γ, τ |g,D) ∝ L(D|γ, τ, g)πτ (τ)πγ(γ), (4.12)

and the uncertainty of βIC , βOC has to be considered in calculating L(D|γ, τ, g) by

L(D|γ, τ, g) =
∫∫∫

L(D|βIC ,βOC , σ2, τ,γ, g)πσ2(σ2)πβγ
OC

(βγOC |g) dσ2 dβIC dβ
γ
OC .

(4.13)

Fortunately the integral in Equation (4.13) has closed form derivations based on the

value of τ ; that is:

• if no shift happens, i.e., τ = N , or γ = 0, the likelihood is calculated as:

L(D|g) =
∫∫

L(D|σ2,βIC)πσ2(σ2) dσ2 dβIC

∝ (1 + gN)−
p
2 (ν

′
1

2 )−
ν′2
2 ,

(4.14)
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and
ν ′1
2 = ν1

2 + mN

2
ν ′2
2 = ν2

2 + (
N∑
i=1
Y T
i Yi −

g

1 + gN

N∑
i=1
Y T
i B(BTB)−1BYi)/2.

(4.15)

and

• Otherwise, Y1:τ and Yτ+1:N are not mutually independent, and L(D|γ, τ, g)

should be decomposed by:

L(D|γ, τ, g, σ2) = L(Y1:τ |g, σ2)L(Yτ+1:N |γ, τ,Y1:τ , g, σ
2), (4.16)

and then we have

L(D|g,γ, τ) ∝

∣∣∣Σγ̄
τ−

∣∣∣− 1
2
∣∣∣(BT

γBγ)−1
∣∣∣− 1

2 g
1
2
∑p

j=1 I(γ
(j)=0)(1 + gτ)− p2

|Στ+ |−
1
2

(ν
′
1

2 )−
ν′2
2

(4.17)

where |·| is the determinant of a matrix; for σ2Σγ
τ− and σ2Στ+ , it can be proved

that

βγ̄IC |g,γ,Y1:τ ∼ Norm(µγ̄τ− , σ
2Σγ̄

τ−),

β̃OC |g,γ,Yτ+1:N ∼ Norm(µτ+ , σ2Στ+),

where β̃OC = [βγ̄OC ,β
γ
OC ]T , and

Στ− = g

1 + gτ
(BTB)−1

µτ− = g

1 + gτ
(BTB)−1BT

τ∑
i=1
Yi

Στ+ =

(Σγ̄
τ−)−1 + (N − τ)(BT

γ̄Bγ̄) (N − τ)BT
γ̄Bγ

(N − τ)BT
γBγ̄

g(N−τ)+1
g

(BT
γBγ)


−1

µτ+ = Στ+(B̃
N∑

i=τ+1
Yi + (Σγ̄

τ−)−1µγ̄τ−)

(4.18)
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where the subscript τ− or τ+ represents the posterior distribution is conditional

on the data up to τ or N respectively, and B̃ is formed by permuting the

columns of B corresponding to β̃OC . The ν′1
2 and ν′2

2 in Equation (4.17) are then

defined as:

ν ′1
2 = ν1

2 + mN

2
ν ′2
2 = ν2

2 + (µγ̄τ−)T (Σγ̄
τ−)−1µγ̄τ− −

N∑
i=1
Y T
i Yi

+ g

1 + gτ

τ∑
i=1
Y T
i B(BTB)−1BYi − µTτ+Σ−1

τ+µτ+ .

(4.19)

Related proof is provided in Appendix E.

βIC is known (Phase II)

The knowledge of βIC could facilitate the diagnosis, because it helps calcu-

late the likelihoods more precisely. The joint posterior probability of the concerned

variables can be expressed as:

P (γ, τ |g,βIC ,D) ∝ L(D|γ, τ,βIC , g)πτ (τ)πγ(γ). (4.20)

The likelihood L(·) is calculated by the integral:

L(D|γ, τ, g,βIC) =
∫∫

L(D|βIC ,βOC , σ2, τ,γ, g)πσ2(σ2)πβγ
OC

(βγOC |g) dσ2 dβγOC .

(4.21)

As in the discussion of πτ (τ), we should be aware of that the process could have at

most three states. That is:

• If shift happens before the very beginning observation, i.e., τ = 0 and βi = βOC
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for i = 1, · · · , N . Therefore

L(D|γ, τ = 0, g,βIC) =
∫∫

L(D|,βOC , σ2, τ = 0,γ, g)πσ2(σ2)πβγ
OC

(βγOC |g) dσ2 dβγOC

∝ (1 + gN)−
∑p

j=1 I(γ
(j)=1)

2 (ν
′
1

2 )−
ν′2
2 ,

(4.22)

where

ν ′1
2 = ν1

2 + mN

2
ν ′2
2 = ν2

2 +
N∑
i=1

(Yi −Bγ̄β
γ̄
IC)T (I + ( g

1 + gN
)(BT

γBγ)−1)(Yi −Bγ̄β
γ̄
IC).

(4.23)

The above results come from the conjugate property of πσ2(σ2), and

• if no shift happens, the likelihood is only conditional on the value of βIC , i.e.,

L(D|βIC) =
∫
L(D|σ2,βIC)πσ2(σ2) dσ2

∝ (ν
′
1

2 )−
ν′2
2 ,

(4.24)

where

ν ′1
2 = ν1

2 + mN

2
ν ′2
2 = ν2

2 +
N∑
i=1

(Yi −BβIC)T (Yi −BβIC),
(4.25)

and

• if 0 < τ < N , the likelihood is recalculated as

L(D|τ,γ,βIC , g) =
∫
L(D|σ2, τ,γ,βIC ,βOC)πβγ

OC
(βγOC |g)πσ2(σ2) dβγOC dσ2

∝ (1 + g(N − τ))−
∑p

j=1 I(γ
(j)=1)

2 (ν
′
1

2 )−
ν′2
2 ,

(4.26)
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and

ν ′1
2 = ν1

2 + mN

2
ν ′2
2 = ν2

2 + (
τ∑
i=1

(Yi −BβIC)T (Yi −BβIC)

+
N∑

i=τ+1
(Yi −Bγ̄β

γ̄
IC)T (Yi −Bγ̄β

γ̄
IC)

− g

1 + g(N − τ)

N∑
i=τ+1

(Yi −Bγ̄β
γ̄
IC)TBγ(BT

γBγ)−1BT
γ (Yi −Bγ̄β

γ̄
IC))/2,

(4.27)

where (BT
γBγ)−1 exists because B is a full rank matrix, and so as Bγ . See the

proof of Equation (4.27) in Appendix E.

4.2.3 Diagnosis by MCMC

Notice that all the above conditional posteriors of τ and γ are conditional on

g. Integrating g out from the posteriors, however, either requires calculating Gaussian

hypergeometric functions, which could incur numerical overflow (Liang et al., 2008)

problems, or almost impossible. Besides, the exhaustive calculation of P (γ, τ |D, g)

is quite time consuming or infeasible for problems of large size data or high dimen-

sion profile parameters, since we have (n − 1) × 2p possible combinations of (γ, τ).

Therefore, we decide to implement MCMC methodologies to calculate the empiri-

cal posterior distribution of (τ,γ). Particularly, we implement a Gibbs sampler to
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alternatively sample τ , γ and τ from their conditional posterior distributions:

P (τ |D, g,γ) ∝ πτ (τ)L(D|τ,γ, g)

P (γ|D, g, τ) ∝ πγ(γ)L(D|τ,γ, g)

πg(g|D, τ,γ) ∝ πg(g)L(D|τ,γ, g),

(4.28)

for Phase I diagnosis, or

P (τ |D, g,γ,βIC) ∝ πτ (τ)L(D|τ,γ,βIC , g)

P (γ|D, g, τ,βIC) ∝ πγ(γ)L(D|τ,γ,βIC , g)

πg(g|D, τ,γ,βIC) ∝ πg(g)L(D|τ,γ,βIC , g)

(4.29)

for Phase II diagnosis. Although the conditional distributions in Equations (4.28)

and (4.29) are known up to a constant, they are neither of explicit forms nor com-

monly used distributions. Therefore, we implement Metropolis-in-Gibbs sampling

procedures; that is, τ , γ and g are sampled from the conditional posterior distribu-

tion sequentially, whilst such sampling is completed via a Metropolis-Hasting (MH)

proposal kernel. Denote the initial samples as (τ (0),γ(0), g0), each of which could be

sampled from the priors defined before. Suppose the samples at the tth iteration are

(τ (t),γ(t), g(t)), then they move to new values at t+ 1 by:

• generate τ (∗) ∼ qτ (τ (∗)|τ (t)). qτ (·|τ (t)) could either be generated randomly from

a discrete uniform distribution on the support of πτ (τ) (i.e., free move) or from

a neighborhood of τ (t) of length dτ (t) except τ (t) (i.e., local move). In our work,

we adopt the local move with dτ (t) = 5. The acceptance ratio is

r(τ (t), τ (∗)) = πτ (∗)L(D|τ (∗), g(t),γ(t))/qτ (τ (∗)|τ (t))
πτ (t)L(D|τ (t), g(t),γ(t))/qτ (τ (t)|τ (∗)) , (4.30)
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and we accept the move, i.e., τ (t+1) = τ (∗), by probability min(1, r(τ (t−1), τ (∗)));

• generate γ(∗) ∼ qγ(γ(∗)|γ(t)). γ(∗) is sampled by using the “rev.jump” sampling

algorithm in Zeugner (2011), and see the reference for details. The acceptance

ratio for such proposal is:

r(γ(t),γ(∗)) = πγ(γ(∗))L(D|γ(∗), g(t), τ (t+1))/qγ(γ(∗)|γ(t))
πγ(γ(t))L(D|γ(t), g(t), τ (t+1))/qγ(γ(t)|γ(∗)) , (4.31)

and then γ(t+1) = γ(∗) with probability min(1, r(γ(t),γ(∗)));

• generate g(∗) from πg(·) (equivalent to generating g(∗)

1+g(∗) from Beta(1, a/2 − 1)

and then resolving g(∗)). The acceptance ratio is simply

r(g(t), g(∗)) = L(D|g(∗),γ(t+1), τ (t+1))
L(D|g(t),γ(t+1), τ (t+1)) , (4.32)

and the move is accepted with probability min(1, r(g(t), g(∗))).

The above procedures are for Phase I diagnosis and assume that βIC is unknown,

and the implementation should be straightforward for Phase II diagnosis. During the

sample, τ and γ are sampled independently, and we allow the existence of τ (t) = N

and γ(t) 6= 0 or τ (t) 6= N and γ(t) = 0. By doing so, the restriction bound between τ

and γ is released, and this facilitates the mixing efficiency of the Markov chain. The

diagnosis algorithm in this chapter is summarized as Algorithm 4.1.
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Algorithm 4.1 MCMC algorithm for multivariate linear profile diagnosis
Data: Yi, i = 1, · · · , N
Input: B, hyperparameters (ν1, ν2, a, ω0), and the iteration number R
Output: MCMC samples
Initialization: randomly generate (τ (0),γ(0), g(0))
for t+ 1 = 1 to R do
generate τ (∗) ∼ qτ (τ (∗)|τ (t)), and take

τ (t+1) =
{
τ (t) with probability 1− r(τ (t), τ (∗))
τ (∗) with probability r(τ (t), τ (∗))

by calculating r(τ (t), τ (∗)) from Equation (4.30);
generate γ(∗) ∼ qγ(γ(∗)|γ(t)), and take

γ(t+1) =
{
γ(t) with probability 1− r(γ(t),γ(∗))
γ(∗) with probability r(γ(t),γ(∗))

by calculating r(γ(t),γ(∗)) from Equation (4.31);
generate g(∗) ∼ πg(·), and take

g(t+1) =
{
g(t) with probability 1− r(g(t), g(∗))
g(∗) with probability r(g(t), g(∗))

by calculating r(g(t), g(∗)) from Equation (4.32);
end for
Diagnostic result: the maximum a posteriori (MAP) estimate of (τ,γ)

As we explained before, since since τ = N and γ = 0 equivalently indicate

the profile is in control, so for all samples with either τ (t) = N or γ(t) = 0, they can

be aggregated as τ = N and γ = 0 for interpretation convenience, and then we have

P (τ = N |D) = P (gamma = 0|D).
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4.3 Performance study

In this section, the performance of our Bayesian diagnosis is evaluated by

simulations under different scenarios. The diagnosis is tested for both Phase I and

Phase II usage under multiple scenarios. We choose m = 12, p = 8, and the elements

of B are randomly sampled from Unif(−1, 1) for all simulation tests. Yis are then

generated from Equation (4.4) with σ = 1. For the priors settings in Section 4.2.1, we

choose ν1 = N , and ν2 = ν1σ
2, so that the prior mean is close to the true measurement

variance. To assure the proper πg(g|·) in Equations (4.28) and (4.29), we choose a = 3

as explained for πg(g). Further, we choose ω0 = 0.5 so πγ is noninformative. The

setting of πτ (τ) will be explained later according to specific diagnostic requirements.

The MCMC diagnostic algorithm utilizes the first Rb = 5000 MCMC iterations

for burning and the following Ri = 2× 2p ×N iterations for inference. To assess the

reliability of the Bayesian diagnosis, each specific diagnostic task is replicated by 1000

times with 1000 sets of randomly generated D. Two statistics are used to evaluate

the diagnostic performance: firstly, the average of the posterior probabilities of τ and

γ approximately calculated from the MCMC stage, which are denoted as P̂ (τ |D)

and P̂ (γ|D), and secondly, rτ and rγ , the respective ratio of the MAP estimates of

τ and γ being true.

4.3.1 Diagnostic Performance on In Control Process

Before we assess the Bayesian diagnostic effectiveness, it is necessary to inves-

tigate how well Algorithm 4.1 controls generating type I error. The idea is similar
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to studies of in control monitoring characteristics of SPC tools, e.g., AIRL, based on

which parameters of SPC tools are designed.

Phase I In Control Diagnosis

Phase I analysis is used to provide knowledge of βIC for Phase II applications.

In quality control area, we are interested in (i) if βt is inconsistent within D, and if

not then (ii) on which components of βIC the shift happens. The Bayesian diagnosis

is performed on D of length N = {40, 80, 160}, representing short, medium, and

long process runs. As mentioned before, p0 should be determined by the stability of

the process. We choose p0 = 1/N so the AIRL is assumed to be N . However, it

should clarified that p0 is intrinsically independent of the sample size N , and in this

work we set p0 as so mainly because we make no assumption on the AIRL, which

should be available in practice. The Bayesian diagnosis is conducted on D of length

N = {40, 80, 160}, representing short, medium, and long process runs.

The results are given in Tables 4.1 and 4.2 (the symbol ∗ indicates the true

value). It can be seen that rτ and rγ is controlled no less than 0.99 and 0.995

respectively. Therefore, the type I error of diagnosing τ is controlled effectively.

Meanwhile, the empirical estimated value of the posterior probability of (τ,γ) = (0,0)

is more than 100 times larger than that of other candidate diagnostic results. In

addition, since τ = 0 and γ = 0 are equivalent, so either of them being the MAP

estimate leads to the judgment of D is in control.



www.manaraa.com

83

Table 4.1: Phase I In Control Diagnosis of τ

(a) N = 40

τ P̂ (τ |D) rτ
∗40 0.361 0.99

2 0.023
3 0.023
1 0.022
4 0.022

(b) N = 80

τ P̂ (τ |D) rτ
∗80 0.358 0.98

10 0.011
4 0.011
2 0.011
7 0.011

(c) N = 160

τ P̂ (τ |D) rτ
∗160 0.407 0.995

31 0.005
4 0.005
6 0.005
6 0.005

Table 4.2: Phase I In Control Diagnosis of γ

(a) N = 40

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.361 0.999

1, 1, 0, 1, 1, 1, 0, 1 0.003
1, 0, 0, 1, 1, 1, 1, 1 0.003
1, 1, 1, 0, 1, 1, 1, 0 0.003
0, 1, 1, 1, 0, 1, 0, 1 0.003

(b) N = 80

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.358 0.995

1, 1, 0, 1, 1, 1, 1, 0 0.003
1, 1, 1, 1, 0, 1, 0, 1 0.003
1, 1, 0, 1, 0, 1, 1, 1 0.003
1, 1, 1, 0, 1, 0, 1, 1 0.003

(c) N = 160

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.407 0.995

0, 1, 1, 0, 1, 0, 1, 1 0.003
1, 1, 1, 0, 1, 0, 1, 1 0.003
0, 1, 0, 1, 1, 0, 1, 1 0.003
0, 0, 0, 1, 1, 0, 0, 0 0.003

Phase II In Control Diagnosis

The Phase II diagnosis should be conducted after the SPC monitoring signals.

That is, the diagnosis is employed as a retrospective procedure. Usually βIC is ac-

cessible in Phase II stages, so out of control data are mainly concerned. Therefore,

for diagnostic purpose, only a small fragment of D should be collected before the

monitoring signal to save diagnostic cost. The number of observations in the small

fragment can be chosen as the average out of control run length of the SPC monitor-
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ing; meanwhile, the process is commonly allowed to continue for a short period after

the signal to collect enough out of control observations. In Phase II diagnostic tests,

we set N = 10, 20, 40. For the πτ (τ) in Equation (4.10), λ is set by assuming the false

alarm rate equals 0.1 for the monitoring, i.e.,

eλ

eλ +N
= 0.1,

and it can be adjusted to counter the robustness of the monitoring in practice. It

needs to be mentioned that if the τ is diagnosed as 0, more observations ahead of the

signal position are required to track the exact location of τ . The Phase II diagnostic

results on in control observations are given in Tables 4.3 and 4.4, from which we

τ = 0 is correctly diagnosed in 80%, 89%, 94.2% runs respectively, whereas all rγs in

Table 4.4 are greater than 0.98. Since τ = 0 and γ = 0 are exchangable, so either of

them being the MAP estimate leads to the correct diagnosis. Moreover, it should be

noted that such diagnostic results are conditional on the SPC signaling incorrectly,

and the monitoring false alarm rate should be considered to estimate the true type

I error. For example, the true type I error when N = 40 should be approximately

0.1× (1− rγ).

4.3.2 Diagnostic Performance on Inhomogeneous Process

After the in control tests, we now assess how Algorithm 4.1 performs on diag-

nosing the shift position and pattern. The observations generated here contains two

parts, i.e., in control and out of control segments. N , σ2 and priors are set as in Section

4.3.1. Two out of control profiles are considered, namely βγ1
OC = [0,−1.5, 1.8, 0, 0, 2.2]T
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Table 4.3: Phase II In Control Diagnosis of τ

(a) N = 10

τ P̂ (τ |D) rτ
∗10 0.307 0.8

0 0.135
9 0.104
8 0.080
7 0.069

(b) N = 20

τ P̂ (τ |D) rτ
∗20 0.363 0.89

19 0.080
18 0.064
17 0.055
16 0.044

(c) N = 40

τ P̂ (τ |D) rτ
∗40 0.447 0.942

0 0.049
2 0.036
4 0.029
3 0.025

Table 4.4: Phase II In Control Diagnosis of γ

(a) N = 10

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.307 0.982

0, 0, 0, 1, 0, 0, 1, 0 0.004
0, 0, 0, 0, 0, 0, 1, 1 0.004
0, 0, 0, 0, 1, 0, 1, 0 0.004
0, 0, 0, 1, 1, 0, 0, 0 0.004

(b) N = 20

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.362 0.984

0, 0, 0, 0, 1, 0, 0, 1 0.004
0, 0, 0, 0, 1, 1, 0, 0 0.004
0, 0, 1, 0, 1, 0, 0, 0 0.004
0, 0, 0, 1, 0, 0, 0, 1 0.004

(c) N = 40

γT P̂ (γ|D) rγ
∗0, 0, 0, 0, 0, 0, 0, 0 0.447 0.986

0, 0, 0, 1, 0, 1, 0, 0 0.004
0, 0, 0, 0, 0, 1, 1, 0 0.004
0, 0, 0, 1, 0, 0, 1, 0 0.004
0, 0, 0, 0, 0, 0, 1, 1 0.004

or βγ2
OC = [0, 0, 2, 0, 0, 0, 0, 0]T .

Phase I Diagnosis of τ and γ

Assuming in practice the shift could happen at arbitrary time, τ = τ0 is

randomly generated from 1 : N − 1 for each of the 1000 runs, and Y1,···,N are then

generated accordingly. The simulation results are given in Tables 4.5 - 4.10. Since

τ is not consistent within the 1000 runs, so we provided the average approximate
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Table 4.5: Phase I Diagnosis of τ with N = 40

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.985 0.998

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.898 0.994

posterior probability P̂ (τ = τ0|D). The correctness of diagnosing τ is close to 1,

which indicate the diagnosis is sensitive to the changepoint. The diagnosis of γ is

affected by the amount of available observations and the scale of βOC . The value

of rγ is less plausible compared with that for in control diagnosis, especially when

βOC = βγ2
OC and N = 40. However, it should be noted that: firstly, the main target

of Phase I analysis is to provide knowledge of βIC , so identifying τ is more crucial

for the Phase I diagnosis; secondly, for βOC = βγ2
OC , the diagnosis still obtains the

correct fault pattern in at least 67.5% of the 1000 simulations, so for shifts happen

on more than one profile components, our algorithm can diagnose the fault with

reasonable probability; thirdly, we notice that the only deviated profile component

in βγ2
OC is included in all estimates of γ with nontrivial posterior probability (βγ1

OC as

well), as shown in Tables 4.6, 4.8 and 4.10, so the inspection after the diagnosis has

large chance to identify the true fault. Therefore, the Phase I diagnosis can provide

required insight to screen in control observations and profiles.

Phase II Diagnosis of τ and γ

Considering for the Phase II diagnosis, the majority of inspected observations

should be out of control (if the signal is true), in the simulation here τ = τ0 is
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Table 4.6: Phase I Diagnosis of γ with N = 40

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.223 0.675

0, 1, 1, 1, 0, 1, 0, 0 0.074
0, 1, 1, 0, 0, 1, 0, 1 0.070
0, 1, 1, 0, 1, 1, 0, 0 0.068
0, 1, 1, 0, 0, 1, 1, 0 0.064

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.047 0.206

0, 0, 1, 0, 0, 0, 1, 0 0.034
0, 0, 1, 0, 0, 1, 0, 0 0.033
0, 0, 1, 1, 0, 0, 0, 0 0.33
1, 0, 1, 0, 0, 0, 0, 0 0.033

randomly generated from 0 : N/4. Tables 4.11 - 4.16 show the Phase II diagnos-

tic effectiveness is remarkable. τ is correctly diagnosed in (almost) all of the 1000

simulations, with dominating posterior probabilities (P̂ (τ = τ0|D) ≥ 0.789). Mean-

while, as we expected, the true value of γ is diagnosed with much higher correctness

than in Section 4.3.2; for example, rγ = 0.574 on just one profile component fault

given N = 10 observations, and the value increases to 0.816 when 40 observations are

available.

The results suggest Algorithm 4.1, when implemented as a Phase II diagnostic

tool, works appropriately even with small amount of data, and this could be an

appealing property for short run applications. One needs to be mentioned is if the

MAP τ is 0, more observations ahead of D are required to track the exact location

of τ .

Table 4.7: Phase I Diagnosis of τ with N = 80

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.986 0.998

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.776 0.954
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4.3.3 Sparse Diagnosis on γ

From the previous tests we see that the diagnosis on τ is reliable in most

cases, and concerns mainly lay on diagnosing γ if only a single fault happens on

profile parameters and small amount of data is available. That is, the diagnosis is

capable in capturing the inhomogeneity among observations precisely, but it could

require extra assistance to identify the fault pattern exactly. In fact, for most reliable

system, the number of faults on profile components is small when the process is out of

control, so the diagnosis could consider scrutinizing sparse faults with higher priority,

particularly if the diagnosis is unable to provide exclusive conclusion of γ.

To make the diagnosis more parsimonious on γ, we can choose a more infor-

mative πγ , rather than the uniform one used before. Here repeated the diagnostic

tests on βOC = βγ2
OC and N = 40 (Phase I) and N = 10 (Phase II), considering such

situations are the most challenging. The diagnosis of τ is not affected so the results

are not given. The diagnostic results of βγ2
OC with the sparse prior of γ are given in

Tables 4.17 and 4.18. From which we can see that the diagnostic correctness of γ in

the 1000 simulations is increased to 0.888 and 0.968 for the Phase I and Phase II tests

Table 4.8: Phase I Diagnosis of γ with N = 80

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.296 0.744

0, 1, 1, 1, 0, 1, 0, 0 0.080
0, 1, 1, 0, 0, 1, 1, 0 0.078
0, 1, 1, 0, 0, 1, 0, 1 0.075
0, 1, 1, 0, 0, 1, 1, 0 0.074

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.061 0.27

0, 0, 1, 1, 0, 0, 0, 0 0.041
0, 0, 1, 0, 0, 1, 0, 0 0.039
1, 0, 1, 0, 0, 0, 0, 0 0.038
0, 0, 1, 0, 0, 0, 0, 1 0.038
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Table 4.9: Phase I Diagnosis of τ with N = 160

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.983 0.999

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.846 0.998

Table 4.10: Phase I Diagnosis of γ with N = 160

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.377 0.83

1, 1, 1, 0, 0, 1, 0, 0 0.082
0, 1, 1, 0, 0, 1, 1, 0 0.075
0, 1, 1, 0, 0, 1, 0, 1 0.075
0, 1, 1, 0, 1, 1, 0, 0 0.075

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.143 0.37

0, 0, 1, 0, 0, 1, 0, 0 0.056
0, 0, 1, 0, 0, 0, 0, 1 0.055
0, 1, 1, 0, 0, 0, 0, 0 0.053
0, 0, 1, 0, 1, 0, 0, 0 0.052

respectively, and the corresponding posterior distribution of γ|D is also more “spiky”

at the true pattern than it is in previous tests. The results prove that utilizing the

sparse prior of γ helps improve the diagnostic effectiveness on sparse faults. In addi-

tion, such improvement would not undermine the diagnostic capability on non-sparse

faults, which in fact have larger chance to be identified. We also should emphasize

that the invariably high correctness of diagnosing τ makes improving the diagnostic

effectiveness with respect to γ smooth.

4.4 Case Study

Parker et al. (2001) introduced a calibration case at NASA Langley Research

Center, in which a multivariate linear regression model is used to relate 6 response

variables (electrical measurement of forces and moments) and 6 explanatory variables

(forces and moments). By removing the intercepts, the calibration model can be
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Table 4.11: Phase II Diagnosis of τ with N = 10

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.985 0.998

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.789 1

Table 4.12: Phase II Diagnosis of γ with N = 10

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.385 0.844

1, 1, 1, 0, 0, 1, 0, 0 0.079
0, 1, 1, 0, 0, 1, 1, 0 0.078
0, 1, 1, 1, 0, 1, 0, 0 0.077
0, 1, 1, 0, 0, 1, 0, 1 0.077

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.131 0.574

1, 0, 1, 0, 0, 0, 0, 0 0.052
0, 1, 1, 0, 0, 0, 0, 0 0.051
0, 0, 1, 1, 0, 0, 0, 0 0.051
0, 0, 1, 0, 1, 0, 0, 0 0.050

supposed to:

Yi,1

Yi,2

Yi,3

Yi,4

Yi,5

Yi,6



=



10 −0.01 −0.03 0.26 0 0.03

0.24 21.01 −0.09 0.03 −0.12 0.01

0.09 0.01 6.81 0.04 0.02 −0.03

0 0 0 10.53 −0.47 0.21

−0.021 0 0.01 0.02 7 −0.34

0.04 0 −0.01 0.18 −0.34 11.46





βi,1

βi,2

βi,3

βi,4

βi,5

βi,6



+



εi1

εi2

εi3

εi4

εi5

εi6



, (4.33)

where εi. iid∼ Norm(0, σ2). For the calibration aim, the value of response is measured

Table 4.13: Phase II Diagnosis of τ with N = 20

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.991 1

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.985 1
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by a network of strain gauges. The value of βIC is obtained from calibration exper-

iment. Therefore here we only consider applying the Bayesian diagnosis on Phase II

stages. Suppose βIC = [0, 1.5, 0, 1, 0,−1]T , σ2 = 1, and N = 20 measurement data

is available. We consider two out of control profiles, namely βOC = [0, 2, 0, 1, 1,−2]T

and βOC = [1, 1.5, 0, 1, 0,−1]T . We investigate the diagnosis on this application by

following the same simulation settings in Section 4.3.2.

The results is given in Tables 4.19 and 4.20, from which we see that both τ

and γ are diagnosed with high correctness.

4.5 Conclusion

We have proposed a Bayesian diagnostic approach for multivariate linear pro-

file models. We have illustrated the diagnosis as an integration of offline changepoint

detection and stochastic search variable selection for identifying fault patterns. The

novel diagnosis has several advantages over existing diagnostic frameworks: firstly, it

is eligible to provide estimates on both the changepoint and shifted profiles simulta-

neously, whereas most other diagnostic tools for profiles requires the exact position

Table 4.14: Phase II Diagnosis of γ with N = 20

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.504 0.894

0, 1, 1, 0, 1, 1, 0, 0 0.074
1, 1, 1, 0, 0, 1, 0, 0 0.073
0, 1, 1, 0, 0, 1, 0, 1 0.071
0, 1, 1, 0, 0, 1, 1, 0 0.070

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.337 0.818

0, 0, 1, 0, 0, 0, 1, 0 0.064
0, 0, 1, 0, 0, 0, 0, 1 0.064
0, 0, 1, 0, 1, 0, 0, 0 0.062
0, 0, 1, 1, 0, 0, 0, 0 0.062
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Table 4.15: Phase II Diagnosis of τ with N = 40

(a) Diagnosis under βγ1
OC

τ P̂ (τ |D) rτ
τ0 0.998 1

(b) Diagnosis under βγ2
OC

τ P̂ (τ |D) rτ
τ0 0.877 0.998

Table 4.16: Phase II Diagnosis of γ with N = 40

(a) Diagnosis under βγ1
OC

γT P̂ (γ|D) rγ
∗0, 1, 1, 0, 0, 1, 0, 0 0.682 0.954

0, 1, 1, 0, 0, 1, 0, 1 0.055
0, 1, 1, 0, 1, 1, 0, 0 0.054
0, 1, 1, 0, 0, 1, 1, 0 0.052
0, 1, 1, 1, 0, 1, 0, 0 0.049

(b) Diagnosis under βγ2
OC

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.344 0.816

0, 0, 1, 0, 0, 1, 0, 0 0.068
1, 0, 1, 0, 0, 0, 0, 0 0.064
0, 0, 1, 0, 0, 0, 1, 0 0.062
0, 0, 1, 0, 0, 0, 1, 0 0.061

of changepoint is given (Mahmoud et al., 2007; Zou et al., 2007a), so the proposed

diagnostic method here can be conducted more economically in practice; secondly,

the Bayesian diagnosis is able to handle multivariate linear profiles by estimating

the fault pattern γ via a MCMC procedure; thirdly, the Bayesian diagnosis can be

flexibly employed for both Phase I and Phase II applications, and to the best of our

knowledge, there is no other alternatives own such capability. The simulation study

illustrate that by setting priors reasonably the proposed Bayesian method provide

reliable diagnostic insights of out of control information whilst controlling the type I

error rate. Finally, we have demonstrated the diagnostic effectiveness on a calibration

application example.
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Table 4.17: Phase I Diagnosis of γ
with Sparse Prior

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.529 0.888

0, 1, 1, 0, 0, 0, 0, 0 0.055
1, 0, 1, 0, 0, 0, 0, 0 0.055
0, 0, 1, 1, 0, 0, 0, 0 0.053
0, 0, 1, 0, 1, 0, 0, 0 0.051

Table 4.18: Phase II Diagnosis of γ
with Sparse Prior

γT P̂ (γ|D) rγ
∗0, 0, 1, 0, 0, 0, 0, 0 0.755 0.968

1, 0, 1, 0, 0, 0, 0, 0 0.037
0, 0, 1, 0, 0, 1, 0, 0 0.034
0, 0, 1, 0, 0, 0, 1, 0 0.032
0, 0, 1, 0, 0, 0, 0, 1 0.031

Table 4.19: Diagnosis of τ for Calibration Application

(a) βOC = [1, 1.5, 0, 1, 0,−1]T

τ P̂ (τ |D) rτ
τ0 0.998 1

(b) βOC = [0, 2, 0, 1, 1,−2]T

τ P̂ (τ |D) rτ
τ0 1 1

Table 4.20: Diagnosis of γ for Calibration Application

(a) βOC = [1, 1.5, 0, 1, 0,−1]T

γT P̂ (γ|D) rγ
∗1, 0, 0, 0, 0, 0 0.675 0.852

1, 0, 1, 0, 0, 0 0.035
1, 0, 0, 0, 1, 0 0.035
1, 0, 0, 1, 0, 0 0.034
1, 0, 0, 0, 0, 1 0.034

(b) βOC = [0, 2, 0, 1, 1,−2]T

γT P̂ (γ|D) rγ
∗0, 1, 0, 0, 1, 1 0.850 0.933

0, 1, 0, 1, 1, 1 0.051
1, 1, 0, 0, 1, 1 0.049
0, 1, 1, 0, 1, 1 0.022
0, 1, 1, 1, 1, 1 0.016
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APPENDIX A
OPTIMAL RESAMPLING IN SECTION 2.2.2

Suppose N particles need to be resampled.

1. given particles {P̃
j

t+1}
R(N)
j=1 with weights {w̃jt+1}

R(N)
j=1 sum to 1. Calculate c, such

that ∑R(N)
j=1 min(cw̃jt+1, 1) = N , and c is unique;

2. for j = 1, . . . , R(N), assume L particles satisfy {w̃jt+1} ≥ 1/c, then we keep

these particles P̃
j

t+1 with their original weights.

3. use the stratified sampling method of Carpenter et al. (1999) to resample N−L

from the remaining R(N)− L particles, and assign weights 1/c to them.

A.1 Stratified Sampling

The stratified sampling algorithm is implemented as follows: let weights of

R(N)− L particles be {w̃jt+1}
R(N)−L
j=1 , and to sample N − L particles from them:

1. let U = ∑R(N)−L
j=1 w̃jt+1 and u be randomly sampled form Unif [0, U ];

2. let u = u− w̃jt+1. Only if u ≤ 0 then keep the particle, and set u = u− w̃jt+1

3. repeat step 2 until N − L particles in total are sampled
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APPENDIX B
PROOF OF LEMMA 3.1

By Theorem 1 in Zhou et al. (2003): if θj = σ2
j is uniquely diagnosable, then

pj ∈ R(H), and pj is a identity vector with the jth element equals 1. Therefore, if

the fault-quality model is fully diagnosable, then H is of full rank.
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APPENDIX C
PROOF OF LEMMA 3.2

A process is fully diagnosable on mean shift if and only if B is of full rank (Li

and Chen, 2016), that is, rank(B) = p, and then rank(BTB) = rank(B) = p; since

BTB is positive definite, so by the Schur product theorem (Li et al., 2007) we know

rank(H) = p and all variance faults are identifiable. If B is not full rank, and m < p,

then rank(B) ≤ m, so H is positive semidefinite and m ≤ rank(H) ≤ m2 (Bapat

and Sunder, 1985; Rao and Kleffe, 1988), and thus unless the rank of H is achieved,

the fully diagnosable property is uncertain.
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APPENDIX D
B IN CASE STUDY

B =



1 0.785 −0.785 0 0 0 0 0 0

0 1.143 −0.143 0 0 0 0 0 0

0 0. 0 1 1.1 −1.1 0 0 0

0 0 0 0 2.2 −1.26 0 0 0

0 0.401 −0.786 0 0 0.38 1 0.385 −0.385

0 0.073 −0.143 0 0 0.07 0 1.02 −0.07

0 0 0

0 0 0

0 0 0

0 0 0

1 0.385 −0.385

0 1.02 −0.07

04×6

0 0 0

0 0 0

−1 −0.096 0

0 0.057 0

06×3 06×6

1 0.60 −1.60

0 2.48 −1.48
02×6

02×3
1 0.24 −0.24 1.24 −0.096 −0.096

0 −0.142 1.142 −0.142 1.050 −1.157


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APPENDIX E
DERIVATIONS OF L(D|G,γ, τ)

E.1 Derivation of Equations (4.14) and (4.17)

• for Equation (4.14) Because τ = 0, so βi = βIC for i = 1, · · · , N . Therefore

βIC |D, g, σ2, τ = 0 ∼ Norm((1
g

+N)−1(BTB)−1BT
N∑
i=1
Yi, (

1
g

+N)−1σ2(BTB)−1).

So

L(D|g, τ = 0, σ2) ∝ (σ2)−mN2 ( 1
1 + gN

)
p
2 exp(−||D||

2

2σ2

+ g

1 + gN

(BT ∑N
i=1 Yi)T (BTB)−1(BT ∑N

i=1 Yi)
2σ2 ),

where ||D||2= ∑N
i=1||Yi||2. Since we use the conjugate prior π2

σ(σ2), so it has

σ2|D, g, τ = 0 ∼ IG(ν
′
1

2 ,
ν ′2
2 ),

where ν′1
2 ,

ν′1
2 are defined in Equation (4.15) and then we have the results in

Equation (4.13).

• for Equation (4.17)

Since

βIC |Y1,···, g, σ
2, τ ∼ Norm(µτ− ,Στ−),

it has

L(Y1,···,τ |g, σ2) ∝ (σ2)−mτ2 ( 1
1 + gτ

)
p
2 exp(−

∑τ
i=1||Yi||2

2σ2

+ g

1 + gτ

(BT ∑τ
i=1 Yi)T (BTB)−1(BT ∑τ

i=1 Yi)
2σ2 ).
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Then

βOC |Y1,···,τ , g,γ ∼ Norm(

µ
γ̄
τ−

0

 , σ2

(1
g

+N)−1(BTB)−1
γ̄ 0

0 g(BT
γBγ)−1

),

so

β̃OC |D, g, τ,γ ∼ Norm(µτ+ , σ2Στ+),

and then

L(Yτ+1,···,N |g, τ,γ, σ2,Y1,···,τ ) ∝ (σ2)−
m(N−τ)

2

∣∣∣∣∣∣∣∣∣
(1
g

+N)−1(BTB)−1
γ̄ 0

0 gBT
γBγ)−1

∣∣∣∣∣∣∣∣∣

− 1
2

|Στ+ |−
1
2

× exp(−
∑N
i=τ+1||Yi||2+(µγ̄τ−)T (1

g
+N)(BTB)γ̄µγ̄τ−

σ2

− µ
T
τ+(Στ+)−1µτ+

σ2 ).

Therefore, from

L(D|g, τ,γ, σ2) = L(Y1,···,τ |g, σ2)L(Yτ+1,···,N |g, τ,γ, σ2,Y1,···,τ ),

Equation (4.13) can be derived by using the conjugacy of π2
σ(σ2) again.

E.2 Derivation of Equation (4.26)

Given βIC , then we have

βγOC |g,Yτ+1,···,N , σ
2 ∼ Norm((N − τ + 1

g
)−1(BT

γBγ)−1)
N∑
τ+1

(Yi −Bγ̄β
γ̄
IC),

σ2(N − τ + 1
g

)−1(BT
γBγ)−1)
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So then we have

L(D|g, τ,γ, σ2,βIC) ∝ (g(N − τ) + 1)−
∑p

j=1(I(γ(j)=1))

2 (σ2)−mN2

× exp(−
∑τ
i=1||Yi −BβIC ||2

2σ2 −
∑N
i=τ+1||Yi −Bγ̄β

γ̄
IC ||2

2σ2

+ g

1 + g(N − τ)
µT
βγ̄
IC

Σ−1
βγ̄
IC

µβγ̄
IC

2σ2 )

where µβγ̄
IC

and Σβγ̄
IC

are the a posteriori mean and variance of βγ̄IC , and

µβγ̄
IC

= g

1 + g(N − τ)(BT
γBγ)−1

N∑
i=τ+1

(Yi −Bγ̄)

Σβγ̄
IC

= g

1 + g(N − τ)(BT
γBγ)−1
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